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Errors in short-term memory increase with the quantity of information stored, limiting the complexity of cognition and behavior. In
visual memory, attempts to account for errors in terms of allocation of a limited pool of working memory resources have met with some
success, but the biological basis for this cognitive architecture is unclear. An alternative perspective attributes recall errors to noise in
tuned populations of neurons that encode stimulus features in spiking activity. I show that errors associated with decreasing signal
strength in probabilistically spiking neurons reproduce the pattern of failures in human recall under increasing memory load. In
particular, deviations from the normal distribution that are characteristic of working memory errors and have been attributed previously
to guesses or variability in precision are shown to arise as a natural consequence of decoding populations of tuned neurons. Observers
possess fine control over memory representations and prioritize accurate storage of behaviorally relevant information, at a cost to lower
priority stimuli. I show that changing the input drive to neurons encoding a prioritized stimulus biases population activity in a manner
that reproduces this empirical tradeoff in memory precision. In a task in which predictive cues indicate stimuli most probable for test,
human observers use the cues in an optimal manner to maximize performance, within the constraints imposed by neural noise.
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Introduction
Short-term recall of basic visual features, such as orientation,
declines steadily in precision as the number of features held in
memory increases (Palmer, 1990; Wilken and Ma, 2004; Bays and
Husain, 2008). Selection processes counteract this limitation by
enhancing storage fidelity of behaviorally important visual items,
but this incurs a cost to the precision of other items in memory
(Bays et al., 2011a; Gorgoraptis et al., 2011; Melcher and Piazza,
2011; Lara and Wallis, 2012). These observations have lent sup-
port to cognitive models of working memory that invoke a lim-
ited supply of a representational medium, shared out between
visual items (Bays and Husain, 2008; Zhang and Luck, 2008; Bays
et al., 2009).

The pattern of recall errors in the space of possible feature
values has proved an important testing ground for competing
models of working memory. Observers make recall errors that
consistently deviate from the familiar normal distribution. This

has been interpreted as evidence for abrupt failures of recall,
consistent with discrete or quantized memory resources (Zhang
and Luck, 2008; Anderson et al., 2011). Alternatively, the same
pattern of errors can be reproduced by continuous-resource
models that assume random variability in resource allocation
(Fougnie et al., 2012; van den Berg et al., 2012).

These studies have all assumed that errors in working memory
representations are normally distributed and sought to identify a
cognitive architecture that can account, on this basis, for the
non-normal error distributions observed in recall tasks. An alter-
native approach is to consider the biological basis for memory
representations in the nervous system and investigate how these
representations fail.

In cortex, basic sensory parameters are encoded in the popu-
lation activity of ensembles of neurons, each tuned to fire maxi-
mally in response to a preferred feature value. Errors occur in
decoding because the processes underlying generation of neuro-
nal spikes are probabilistic (Pouget et al., 2000). In the limit of
large population activity, an efficient estimator will reconstruct a
stimulus with errors that are normally distributed (Seung and
Sompolinsky, 1993). However, decoding accuracy may deviate
from asymptotic limits when asymptotic assumptions are not
met (Xie, 2002; Berens et al., 2011). In the case of working mem-
ory, the substantial variability observed in short-term recall com-
pared with sensory estimation suggests a neural signal that is
weak compared with noise.

Here I examine errors produced by an ideal observer decoding
stimulus parameters from the activity of probabilistically spiking
neurons. As the gain of the neural population decreases, error
distributions deviate from normality in the manner characteristic
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of human working memory. For a neural population encoding
more than one stimulus, a model in which total activity is held
constant reproduces observed errors and has a plausible basis in
divisive normalization (Carandini and Heeger, 1994, 2012).

Differential weighting of inputs to a normalized population
can account for the tradeoff in memory precision between stim-
uli. In recall of multiple items with unequal test probability, I
show that human performance matches predictions of an ideal
observer that optimally weights neural activity to minimize error
on the task.

Materials and Methods
Experimental methods. A total of 15 subjects (six males, nine females; aged
18 – 40 years) participated in the study after giving informed consent, in
accordance with the Declaration of Helsinki. All subjects reported nor-
mal color vision and had normal or corrected-to-normal visual acuity.
Stimuli were presented on a 21-inch CRT monitor with a refresh rate of
130 Hz. Subjects sat with their head supported by a forehead and chin rest
and viewed the monitor at a distance of 60 cm. Eye position was moni-
tored online at 1000 Hz using an infrared eye tracker (SR Research). Each
subject took part in one of two experiments, described below.

Experiment 1: no cue. Each trial began with the presentation of a central
white fixation cross (0.75° of visual angle) against a gray background.
Once a stable fixation was recorded within 2° of the cross, a sample array
consisting of one, two, four, or eight oriented colored bars (2° � 0.3°) was
presented for 2 s. Bar orientations were independently chosen at random
from the full range of possible orientations (0°–180°). Each bar was po-
sitioned on an invisible circle, radius 6°, centered on the fixation cross.
Positions were chosen from a set of eight locations equally spaced around
the circle. Colors were randomly selected on each trial, without repeti-
tion, from a set of eight highly discriminable colors.

After the sample array, the display was blanked for 1 s and then a probe
display was presented, consisting of the reappearance of one randomly
chosen bar from the sample display with a new randomly selected orien-
tation. Participants used an input dial (PowerMate USB Multimedia
Controller; Griffin Technology) to adjust the orientation of this probe
bar to match the remembered orientation of the corresponding item in
the preceding sample array (the target). Responses were not timed, and
subjects were instructed to be as precise as possible. Any trial on which
gaze deviated �2° from the central cross before the probe display was
aborted and restarted with new feature values. Eight subjects participated
in Experiment 1. Each subject completed a total of 900 trials, comprising
225 trials at each of the four different array sizes, randomly interleaved.

Experiment 2: informative cue. The procedure was identical to Experi-
ment 1 except for the following modifications. On each trial, the sample
array was immediately preceded by a cue stimulus, consisting of an an-
nulus (white, radius 2.5°) presented for 500 ms at a location correspond-
ing to one of the items in the upcoming sample array. Participants were
informed that memory for the item appearing at the cued location was
more likely to be tested than other items in the array. The cued item was
chosen as the probe item with three times the frequency of each uncued
item in the sample array. Seven subjects participated in Experiment 2.
Each subject completed a total of 960 trials, comprising 320 trials at each
of three different array sizes (two, four, or eight items), randomly inter-
leaved. Trials were analyzed separately according to whether the probe
corresponded to a cued or uncued item.

A relatively long (2 s) presentation duration was used in both experi-
ments to ensure that errors reflected memory limits rather than incom-
plete sensory processing and because a previous study indicated that
observers’ ability to use predictive cues effectively may be diminished by
brief exposures (Bays et al., 2011a).

Analyses. Orientations were analyzed and are reported with respect to
the circular parameter space of possible feature values, i.e., the space of
possible bar orientations [�90°, 90°) was mapped onto the circular space
[��, �) radians. A measure of recall error was obtained on each trial in
each experiment by calculating the deviation between the orientation
reported by the subject and the correct (target) orientation. For each
combination of experiment, subject, array size, and (in Experiment 2)

cue validity, I calculated measures of variance and kurtosis for the ob-
served recall errors, defining variance as the square of circular SD (� 2)
and using the definitions of SD and kurtosis for circular data given by
Fisher (1995), as follows:

� � � � 2 log �m� 1�

and

k � ��m� 2� cos (Arg �m� 2� � 2 Arg �m� 1�� � �m� 1�4)�1 � �m� 1���2,

respectively, where m� n is the nth uncentered trigonometric moment.
Hypotheses regarding the effects of experimental parameters (array

size, cue validity) on recall variance and kurtosis were tested by ANOVA
and t tests.

Population coding model. I studied orientation encoding and decoding
in a population of idealized neurons with spatial selectivity and orienta-
tion tuning (Pouget et al., 2000). Orientation information presented at
each possible stimulus location provided feedforward input to an inde-
pendent subpopulation of M neurons with bell-shaped tuning functions,
such that the driving input to the ith neuron encoding a stimulus at the
jth location was given by the following:

fij(�j) � exp(� � 1(cos(�ij � �j) � 1)), (1)

where �j is the orientation of the stimulus at location j, �ij is the preferred
orientation of the neuron, and � determines the tuning curve width.
Within each subpopulation, preferred directions were evenly distributed
throughout the range of possible orientations. When no stimulus was
presented at the location represented by a neuron, its driving input was 0.

Divisive normalization (Carandini and Heeger, 2012) operated
over the entire population of neurons, such that the postnormaliza-
tion output of a neuron (its firing rate) was determined by the nor-
malization equation:

rij �� j� � 	

 jfij�� j�

�m,n 
n fmn ��n�
, (2)

where 	 is a gain constant (in hertz) that sets the overall responsiveness of
the population, and 
j is a multiplicative gain factor related to attention
at location j. Assuming that the distribution of tuning curves provides a
dense uniform coverage of the orientation space (valid for large M ), the
summed activation of the population is independent of stimulus orien-
tation, and Equation 2 simplifies to the following:

rij �� j� � 	

 j

�n
n

fij�� j�

Mf
, (3)

where f � I0 ���1�e���1
is the mean activation of neurons respond-

ing to a stimulus (I0 is the modified Bessel function of the first kind
with order 0).

Persistent spiking activity was modeled as a homogeneous Poisson
process, such that the probability of a neuron generating n spikes in time
T is as follows:

Pr�nij��j, T	 �
�rij ��j�T�nij

nij!
exp � � rij ��j�T�. (4)

Recalling the orientation of a stimulus presented at a probed location p
was modeled as maximum likelihood (ML) decoding of the population
spiking activity n observed during a decoding interval Td:

�̂p � arg max
�p

Pr�n��p, Td	 (5)

� arg max
�p

��
i

M

nip log �rip ��p�� � �
i

M

rip ��p�Td�. (6)

If two or more orientations tied for the ML, the decoded orientation was
sampled at random from the tied values. Assuming dense uniform cov-
erage, the second term is constant and Equation 6 further simplifies to the
following:
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�̂p � arg max
�p

�
i

M

nip log � fip ��p�� (7)

� arg max
�p

�
i

M

nip cos ��ip � �p�. (8)

The decoded orientation has some error relative to the original stimulus
value: 
� � �̂p � �p (where � indicates subtraction on the circle). The
distribution of this error is uniquely determined by the values of two
terms: the tuning width �, and a second term, �, which can be interpreted
as the expected summed activity during the decoding window of neurons
encoding the probed stimulus. To see why, it is convenient to consider
the combined activity of neurons selective for the probed location in
terms of the preferred stimulus corresponding to each spike: {�(1), �(2),
. . . �(m)}, where the notation �(1) indicates the preferred stimulus value
of the neuron that generated the ith of m spikes. The decoded orientation
(Eq. 8) can then be written as follows:

�̂p � arg max
�p

�
i

m

cos ��p � ��i��. (9)

Because spikes are generated by independent Poisson processes, every
spike event is conditionally independent of every other given the true
stimulus value, i.e., p(�(i) � �p, �(j)) � p(�(i) � �p) @ j � i. Approximating
the uniformly spaced discrete distribution of preferred directions of M
neurons by a continuous uniform distribution, this probability is given
by the following:

p���i���p� �
exp���1 cos���i� � �p��

2�I0��
�1�

. (10)

The distribution of m, the total spike count during the decoding window,
being a sum of M independent Poisson distributions (Eq. 4), is itself

Poisson with expected value � � 	Td


p

�n
n
. Defining �(i) � �(i) � �p

leads to a very concise description of the distribution of decoding error

� in terms only of � and �:


� � arg max
�

�
i

m

cos �� � ��i��, (11)

m � Poisson(�), (12)

p���i�� �
exp ���1cos ��i��

2�I0 ���1�
. (13)

Simulation and model fitting. I used Monte Carlo simulation to investi-
gate the distribution of error under the model for different values of �
and � and to compare predictions of the model with the empirical distri-
bution of errors obtained in Experiments 1 and 2.

I generated 10 6 samples from the error distribution p(
�) for every
element in a logarithmically spaced 50 � 50 element grid of values of �
(range of 2 �4 to 2 2) and � (range of 2 0 to 2 6), following Equations 11–13,
where the maximization in Equation 11 was based on values calculated at
10 3 evenly spaced points in the interval [��, �). From these samples, I
calculated a histogram estimate of the error distribution corresponding
to each grid point, based on 50 equally spaced bins (I considered other
levels of discretization: likelihoods converged in the range of 25–50 bins,
and additional increases beyond this number of bins had no effect on
results).

To compare the output of the model to results from Experiment 1, in
which all stimuli were equally likely to be probed, I set the attentional
gain factor 
 � 1 for all locations where stimuli were presented (setting

 � 0 for empty locations), i.e., all stimuli were weighted equally. I set the
decoding interval Td � 100 ms. This left two free parameters: �, the
tuning width, and 	, the gain constant that determines the total output
activity of the population. These parameters were fitted to the data ob-
tained from each subject separately, based on maximizing their likeli-
hood given the observed errors: �(�,	 � 
�,N ).

To capture performance in Experiment 2, in which a predictive cue
preceded each stimulus array, I modified the attentional gain factor cor-
responding to the cued location. Specifically, the gain factor correspond-
ing to the cued item, 
cued, was treated as a free parameter with a separate
value for each array size, whereas gain factors for uncued stimulus loca-
tions were held constant, 
uncued � 1. (As above, 
 � 0 for locations
without a stimulus.) ML estimates for the five parameters (�, 	, 
cued

N�2,

cued

N�4, 
cued
N�8) were obtained for each subject’s data separately using the

same procedure as above.
For each subject in Experiments 1 and 2 and each array size, I calcu-

lated optimal values of the gain factor 
cued that would minimize the
variance of error over a sequence of trials, given the relative frequency
with which cued and uncued items were probed in Experiment 2 and the
values of � and 	 obtained by ML. Specifically, I calculated the variance
for 100 logarithmically spaced values of 
cued in the range of 0.01–100,
based on 10 6 samples drawn from the error distribution under the
model, sampling cued and uncued locations in the same proportions as
in the actual experiment. The estimate of optimal 
cued was the value that
produced the smallest variance [note that identical results would have
been obtained by minimizing an explicit cost function of the form C �
1 � cos(
�)].

Unprobed stimuli. To test whether the unprobed stimuli in memory
influenced responses, I fit a variant of the model in which decoding of the
correct neural subpopulation (the one corresponding to the probed lo-
cation) was probabilistic. Specifically, I defined a parameter  as the
probability of incorrectly reporting the neural estimate corresponding to
any individual unprobed stimulus. Likelihoods under the model were
calculated for 50 values of  in the range of 0 – 0.14.

Baseline activity and signal-to-noise ratio. I examined the effect of add-
ing baseline (background) activity to the model neurons by replacing the
activation function (Eq. 1) with a modified function:

fij(�j) � exp(� � 1(cos(�ij � �j) � 1)) � f(0), (14)

where f(0) was a parameter determining the baseline activation level. The
assumption of dense uniform coverage remained valid in this model, and
the decoding error could be shown to depend only on �, �, and f(0) by a
similar argument to the above. I approximated the likelihood using
Monte Carlo simulation, generating 10 5 samples from the error distri-
bution p(
�) for every element in a logarithmically spaced 50 � 50 � 50
element grid of values of � (range of 2 �4 to 2 4), � (range of 2 �2 to 2 23),
and f(0) (range of 2 �6 to 2 4). Figure 4 plots baseline activation as a
proportion of peak activation f(0)/(f(0)  1).

The signal-to-noise ratio (SNR) per neuron is the ratio between vari-
ance attributable to stimulus differences in the expected spike count
during the decoding window, n�(�) � Tdr(�), and the additional variance
in actual spike counts n(�) attributable to Poisson noise:

SNR �
Var��n����	

Var��n����n����	
�

Td
2E��r���2	 � �TdE��r���	�2

TdE��r���	

�
Td	

MN �I0 �2��1�

I0��
�1�2 � 1�, (15)

based on equal attentional gain for all stimuli and no baseline activity.
Incorporating a baseline activation f(0) as described above, I obtained the
following more general formula:

SNR �
Td	

MN

I0 �2��1� � I0 ���1�2

�I0 ���1� � e��1
f�0��

2 . (16)

Heterogeneous and non-normal tuning. To investigate the effects of vari-
ability in shape and amplitude of tuning functions on errors in the pop-
ulation coding model, I simulated ML decoding of populations of
neurons with tuning functions of the general form (normal tuning),

fij(�j) � aijexp(�ij
� 1(cos(�ij � �j) � 1)) � f(0)ij (17)

and (cosine tuning),
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fij �� j� � � aijcos ��ij
�1 ��ij � �j�� � f�0�ij for �ij

�1��ij � �j� �
�

2

f�0�ij for �ij
�1��ij � �j� �

�

2

,

(18)

where amplitudes aij, tuning widths �ij, and baselines f(0)ij were normally
distributed random variables (truncated at 0), and preferred orientation
�ij was a uniformly distributed random variable on the circle. The de-
coder had knowledge of the individual tuning functions of the neurons.
Error distributions were obtained by explicit simulation and decoding of
spike trains generated by M � 100 or 1000 simulated neurons, following
Equations 2– 6.

Correlated activity. To investigate the effect of short-range noise cor-
relations on decoding errors, I modified the (zero-baseline, homoge-
neous) population coding model to incorporate pairwise correlations in
spike generation. The correlation in activity between the ith and jth neu-
rons both responding to a stimulus at location k was an increasing func-
tion of the similarity in their preferred orientations:

cik,jk � c0exp(� ��ik � �jk�). (19)

Activity of neurons selective to different locations was uncorrelated. Er-
ror distributions were again obtained by explicit simulation and decod-
ing of spike trains generated by M � 100 or 1000 simulated neurons. The
decoder did not have knowledge of the correlations: decoded values were
obtained according to Equation 8. Correlated spike counts were gener-
ated based on the “latent Gaussian” method of Macke et al. (2008), using
code available at http://bethgelab.org/software/mvd/.

Discrete- and continuous-representation models. I compared the popu-
lation coding model to two previously proposed cognitive-level models
based on distributing a limited representational medium between items.

In the discrete-representation (or “slots  averaging”) model (Zhang
and Luck, 2008), the representational medium is divided into a fixed
number of memory quanta or “slots,” M, which are distributed between
array items. Each of the slots holds a separate representation of an object
feature, equal to the correct feature value plus circular normally distrib-
uted noise with SD �1. Slots are distributed as evenly as possible between
array items, and if there are more slots than array items, the same item
may be represented more than once. For items that receive more than one
slot, the multiple representations are averaged, such that recall error for
an item with S slots is distributed as a circular normal with SD �1/�S.

On a trial with N items, each item receives one of two numbers of slots
Shigh or Slow, with probability Phigh and Plow, respectively:

Shigh � ⎣M/N⎦ � 1, Phigh � �M mod N�/N
Slow � ⎣M/N⎦, Plow � 1 � �M mod N�/N , (20)

where ⎣x⎦ is the floor function. So the distribution of responses �̂ for
recall of a stimulus value � is given by the following:

p��̂� � P low�VM ��̂; �, �1/�Slow� � Phigh�VM ��̂; �, �1/�Shigh�,

(21)

where �VM(�̂; �, �) is the Von Mises probability density function with
mean � and circular SD �. (The circular SD of a Von Mises distribution is
related to its concentration � by � � �� 2 log �I1 ���/I0 ����.)

For each subject in Experiment 1, I calculated likelihoods for a 50 � 50
element grid of parameters �1 (range of 0.3–30) and M (range of 1–50) of
the discrete-representation model. To fit the data from Experiment 2, I
introduced additional free parameters, AN �2, AN � 4, and AN � 8 (each
with range of 0 to M ), that determined the number of slots allocated to
the cued item at each set size; the remaining slots were allocated as evenly
as possible between uncued items.

The variable-resource model (van den Berg et al., 2012) is a doubly
stochastic model, in which items are represented with circular normal
(Von Mises) distributed error, the variability of which is itself a random

variable, resulting in an infinite mixture of circular normal distributions
of different widths. van den Berg et al. parameterized the width of the
Von Mises distribution by its Fisher information J, which is related to its
concentration � by J � �I1(�)/I0(�). According to the variable-resource
model, the Fisher information has a gamma distribution:

p� J� �
JJ/��1e�J/�

� �J�/���J/�
, (22)

where � is a scale parameter that remains fixed across changes in array size
N, and J� is the mean of the distribution that has a power law relationship
with array size: J� � J�1/N 
. For each subject in Experiment 1, I calculated
likelihoods for a 50 � 50 � 50 element grid of parameters J�1 (range of
1– 60), 
 (range of 0 –2), and � (range of 1– 60) of the variable-resource
model. Likelihoods for the variable-resource model were estimated by
approximating the infinite mixture of normals by a discrete mixture
consisting of 1000 normal distributions with concentrations � logarith-
mically spaced in the range 10 �3 to 10 3 [this was found to be a more
reliable, although asymptotically equivalent, method to the Monte Carlo
approach used previously (van den Berg et al., 2012)].

Model comparison. Formal model comparisons were conducted based
on Bayes factors, Bayesian information criterion (BIC) and Akaike infor-
mation criterion (AIC). The Bayes factor is the ratio of likelihoods under
two competing models, averaged across model parameters. Using Bayes
factors automatically penalizes models with too much model structure,
(i.e., too many free parameters). Bayes factors were calculated from the
grid of likelihood values under each model by trapezoidal numerical
integration, assuming a uniform prior over model parameters (for addi-
tional details of this method, see van den Berg et al., 2012). I also calcu-
lated the BIC and AIC, which are similar measures based on the
maximum rather than average likelihood and incorporating explicit pen-
alty terms for free parameters. A model recovery analysis (based on gen-
erating 2880 synthetic datasets using ML parameters obtained by fitting
each of the models to data from Experiment 1) found all three measures
to be similar in reliability, selecting the correct model on 93.6% (Bayes
factor), 91.3% (BIC), and 91.5% (AIC) of datasets.

Results
I tested the ability of a population coding model to describe errors
in short-term memory for displays consisting of multiple orien-
tation stimuli. Memorization of the display was modeled as en-
coding of the stimulus orientations in the activity of a population
of idealized memory neurons, with spatial selectivity and orien-
tation tuning. Each orientation stimulus provided a feedforward
input to a discrete subpopulation of neurons selective to its loca-
tion. Within that subpopulation, the driving input to each neu-
ron was determined by the deviation between the stimulus
orientation and the preferred orientation of the cell, following a
bell-shaped tuning function (Fig. 1a).

Divisive normalization operated over the population of neu-
rons, such that the firing rate of each neuron was determined by
dividing its individual driving input by the summed input to the
population. As a consequence, the total response of the popula-
tion was constant, and the summed firing rate of neurons encod-
ing any individual stimulus was inversely related to the total
number of stimuli represented.

Retention of the stimulus display in memory was modeled
as persistent spiking activity in the population of neurons.
Each neuron generated spikes stochastically and indepen-
dently, according to a Poisson process, maintaining the firing
rate determined by its normalized driving input (Fig. 1b). Sub-
sequent recall of the orientation of a probed item was modeled
as ML decoding of the population spike trains over a fixed time
window. Because spike generation was stochastic, the decoded
orientation was an imprecise estimate of the original stimulus
value.
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Figure 1c provides an illustration of how the distribution of
errors in a decoded stimulus parameter depended on the gain
(summed firing rate) of the pool of neurons encoding it. For high
gains, variability in the decoded parameter was small, and errors
approximated a normal distribution centered on the true stimu-
lus value (e.g., blue curve). As gain decreased, variability in the
decoded parameter increased (e.g., magenta, red curves), but as
well as becoming broader, the distribution of errors deviated sys-
tematically from the circular normal distribution.

Figure 1, d and e, plots variance and kurtosis (a measure of
deviation from the normal distribution) of the decoded error
distribution as a function of population gain and tuning width.
Non-normal error distribution (positive kurtosis) was a univer-
sal observation for the population coding model at lower gains,
although the gain at which the strongest deviations from normal-
ity were observed and the precise shape of the distribution de-
pended on the width of the tuning function (see Fig. 4a,b). As
gain fell to 0, decoding precision also approached 0, and errors
approached a uniform distribution. Because the uniform distri-
bution on the circle is also a circular normal, kurtosis fell to 0 at
the lowest gains (Fig. 1e).

Population coding model accounts for human recall errors
To compare the predictions of the population coding model to
human memory performance, observers in Experiment 1 were
presented with displays consisting of between one and eight ori-

ented bars. After a brief blank display, one location was probed,
and subjects reported the remembered orientation of the item at
that location using a response dial. Recall error was quantified as
the angular deviation between the reported orientation and its
true value in the memory array. The distributions of recall errors
for stimulus arrays containing different numbers of orientations
are plotted as black symbols in Figure 2a (for one representative
subject) and Figure 2c (mean � SE for eight subjects). As ob-
served in previous studies, each increase in memory load resulted
in a corresponding decrease in recall precision (broader error
distributions, left to right).

I fit two global parameters of the population coding model,
the tuning curve width � and the gain constant 	, individually to
each subject’s data. Red lines in Figure 2a plot the distribution of
errors generated by the model at each array size, with ML param-
eters for the representative subject (� � 0.65; 	 � 113 Hz). As a
result of divisive normalization, the activity encoding each stim-
ulus orientation in the model decreased as array size increased,
reproducing the increase in variability seen in empirical data.
Figure 2c presents mean predictions of the fitted population cod-
ing model for the group (red lines; with ML parameters displayed
in Fig. 2b; � � 0.52 � 0.05; 	 � 119 � 4 Hz).

Figure 2d (black symbols) plots the variance (squared circular
SD) of observers’ responses as a function of array size. As ob-
served in previous studies (Bays and Husain, 2008; Bays et al.,
2009), the relationship between variance and load was not linear

a

d e f

b c

Figure 1. The population coding model. a, Stimulus orientations were encoded in the activity of idealized neurons with preferred orientations evenly distributed on the circle and bell-shaped
tuning functions (width �). Each of N stimuli was encoded by an independent subpopulation of M neurons. Divisive normalization operated across the whole population, scaling population activity
to a level determined by the gain constant, 	. (Note that the 180° range of orientations is represented here by the circular parameter space �� to �). b, Each neuron generated spikes according
to a Poisson process, with mean firing rate determined by the normalized input of a neuron. Subsequent recall was modeled as ML decoding of the spiking activity of the subpopulation of neurons
corresponding to a probed stimulus over a fixed time window. c, Simulations showed that error in the recalled orientation depended on gain (summed output) of the decoded subpopulation, which
declined with increasing N as a result of divisive normalization. At high gains, errors had an approximately normal distribution (e.g., blue curves). As gain decreased (magenta to red curves),
variability increased and error distributions deviated from normality. Note that error distributions shown are normalized by peak probability to better illustrate distribution shape. d, Variance of
simulated errors under the population coding model as a function of gain and tuning width. The lowest variances (blue) were obtained with high gains and narrow tuning functions. The range of
variances typically observed in human recall corresponds approximately to the yellow band. e, Kurtosis of errors. Circular kurtosis approached 0 at the highest gains, indicating that errors had an
approximately circular normal distribution. Kurtosis also approached 0 at the lowest gains, as errors approached a uniform distribution on the circle. Positive kurtosis (hot colors) was observed at
intermediate gains for all tuning widths, indicating deviations from circular normality. f, Exponent of a power law relating gain to error variance (estimated from the change of variance resulting from
halving the gain, equivalent to doubling the number of items in memory). At high gains, the exponent approached �1, indicating variance was inversely proportional to gain (Seung and
Sompolinsky, 1993). However, at intermediate gains, the exponent became more strongly negative (less than �1; green and blue regions) for all tuning widths.
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but instead approximated a power law, appearing linear on the
log–log axes in Figure 2d (exponent 1.36 � 0.08, differing signif-
icantly from unity: t(7) � 4.5, p � 0.0027). Results from the model
(red line) closely approximated this nonlinear relationship. Such
supralinear increases in variance were a feature of the model for a
wide range of tuning widths and population gains (Fig. 1f).

Figure 2e (black symbols) plots the discrepancy between the
observed distribution of errors made by observers at each array
size and a circular normal distribution with the same variance.
The distinctive “Mexican hat” function indicates excess kurtosis,
i.e., that the error distributions have sharper peaks and longer
tails than a normal distribution. Previous studies have noted the
long tails of the distribution at high memory loads (Zhang and
Luck, 2008). However, as this plot makes clear, such deviations
from normality are not unique to high loads and are present even
for one item (Fig. 2e, left panel). The circular kurtosis, a measure
of deviation from the circular normal, is plotted in Figure 2f
(black symbols). Kurtosis displayed a nonlinear relationship with
set size, with the highest values obtained at lower memory loads.

As indicated previously (Fig. 1c), deviations from the normal
distribution were characteristic of the population coding model
at lower gains. Red lines in Figure 2e plot the deviation from
normality of error distributions generated by the model with ML
parameters. The model successfully replicated the discrepancies
from normality observed in human performance, as well as the

nonlinear relationship between kurtosis and memory load (Fig.
2f, red line; note that, for ML parameters, peak kurtosis occurred
in the region of one to two items, accounting for the decline in
kurtosis at larger set sizes).

Weighting of population activity prioritizes cued items
Previous studies showed that observers can maintain goal-
relevant visual information with enhanced precision, at a cost to
recall of other visual items (Bays and Husain, 2008; Gorgoraptis
et al., 2011). In the population coding model, such a precision
tradeoff could arise from an increase in input drive to neurons
encoding the prioritized stimulus. As a result of divisive normal-
ization, this would have the effect of both increasing recall fidelity
for the preferred stimulus and reducing precision for other items
in memory compared with the situation with equal inputs.

I performed a second experiment to test this account. The task
was identical to Experiment 1, except that one item on each trial
was highlighted by a visual cue appearing before the array, and
this cued item was more likely to be probed on the subsequent
test than other items in the array. Based on previous results, I
expected that observers would prioritize accurate storage of the
cued item to maximize their overall response precision.

The distributions of errors in Experiment 2, for stimulus ar-
rays containing between two and eight items, are plotted as black
symbols in Figure 3a: top row shows the overall distribution of
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Figure 2. Human recall errors and model fits. a, Black symbols show distribution of recall errors made by a representative human observer for displays of one to eight orientation stimuli. Red
curves show error distributions generated by the population coding model for ML parameters 	 and �. Note that the model reproduced the changes in error distribution with array size (left to right)
despite model parameters remaining fixed. b, ML values of population gain 	 and tuning width � for eight subjects. Open circle corresponds to subject shown in a. c, Black symbols show mean
distribution of recall errors for the group (error bars indicate �1 SE). Red curves show mean error distributions for the population coding model with ML parameters. d, Variance of error in recalled
orientation for human observers (black symbols) and for the population coding model with ML parameters (red curve, dashed lines indicate �1 SE). Variance has an approximately power-law
relationship with set size (appearing linear on the log–log plot). e, Deviation from the circular normal distribution. Black symbols plot mean discrepancy between subject error frequencies shown
in c and circular normal (Von Mises) distributions matched in variance. Red curves plot equivalent deviations for the population coding model with ML parameters. f, Kurtosis of recall errors for
subjects (black symbols) and the population coding model (red curve, dashed lines indicate �1 SE). The circular normal distribution has kurtosis around 0.
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recall errors, middle row shows only trials in which memory for
the cued item was tested, and bottom row shows trials in which
one of the uncued items was tested. Consistent with previous
studies, cued items were recalled with significantly lower variabil-
ity than uncued items (Fig. 3b, red symbols, cued; green symbols,
uncued; F(1,6) � 15.4, p � 0.008).

Within the population coding model, weighting of storage
precision was modeled by a parameter, 
cued, that determined the
extra input drive to neurons corresponding to the cued item and
hence the ratio of cued/uncued stimulus-related activity in the
normalized population. I obtained ML parameters of the model
for each subject, allowing this weighting factor to take on a
different value for each array size, while keeping the tuning
curve width � and population gain 	 constant. Estimates of
tuning width (� � 0.49 � 0.05) and population gain (	 �
81 � 15 Hz) were statistically indistinguishable from those
obtained for the separate group of subjects in Experiment 1
(t(13) � 0.93, p � 0.37). Curves in Figure 3a show the distri-
bution of errors generated by the model with ML parameters,

averaged across subjects. Lines in Figure 3b show error vari-
ance under the model.

Evidence for optimal weighting in human performance
Although previous studies found evidence for top-down control
over memory resources favoring cued items, it has not been pos-
sible previously to assess whether this allocation was quantita-
tively matched to performance goals. In contrast, the constraints
of the population coding model make it possible to identify op-
timal weightings of cued to uncued activity that would minimize
expected errors on the task, given the frequency with which each
class of item was tested.

To identify which weights were optimal for the task parame-
ters of Experiment 2, I calculated the expected variance of errors
on this task for a range of different values of the weighting factor

cued. This also required specifying values of the population pa-
rameters � and 	, and for this purpose I used the ML values
obtained from observers in Experiment 1 (Fig. 2b). The values of

a b
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Figure 3. Recall with an informative cue. a, Black symbols show mean distribution of recall errors for displays of two to eight orientations in Experiment 2, in which one stimulus, indicated by a
cue, was more likely to be selected for test. Overall error variability increased with array size (top, left to right). When separating trials according to cue validity, recall was found to be consistently
less variable for the cued item (middle) than for uncued items (bottom). In the population coding model, this corresponds to an increased weighting of activity related to the cued stimulus. Colored
curves show mean error distributions generated by the model with ML parameters. Note that only the weighting of activity to stimuli differed across array sizes (left to right), with total population
activity and tuning width remaining constant for each subject. b, Variance of error for cued items (red) and uncued items (green), for human observers (symbols) and the population coding model
with ML parameters (solid lines; dashed lines indicate �1 SE). Differences in variance between cued and uncued items are accounted for in the model by differential weighting of activity. c, Kurtosis
of errors for cued and uncued items. d, Comparison of weighting factors estimated from subject errors on the cued task (Experiment 2, white bars) and optimal weightings that would be expected
to minimize total error variance (blue bars, based on ML parameters 	 and � obtained from the uncued task, Experiment 1). Optimal behavior predicts that weighting of activity in favor of the cued
item should increase with each increase in display size (blue bars, left to right), and this predicted pattern was observed in the weighting factors estimated from subject errors (white bars).
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cued that minimized error variance at each set size are shown as
blue bars in Figure 3d.

These optimal weights were found to be greater than unity for
all set sizes, indicating that an ideal observer should increase in-
put drive to the cued item to store it with greater precision than
uncued items. Furthermore, although relative test probability for
cued and uncued items was held constant across set sizes (in the
ratio 3:1), in all cases the optimal weighting factor 
cued increased
as the number of uncued items grew (two vs four items: t(7) � 3.7,
p � 0.01; four vs eight items: t(7) � 3.1, p � 0.017). So, minimiz-
ing error variability at higher memory loads required an increas-
ing bias of coding activity toward the cued item, although its
relative probability of being chosen for recall was unchanged.

White bars in Figure 3d show ML values of the weighting
factors obtained from subject data in Experiment 2. In agreement
with optimal predictions, these empirical 
cued values increased
significantly with each increase in set size (two vs four items: t(6) �
2.8, p � 0.03; four vs eight items: t(6) � 3.4, p � 0.01) and were
statistically indistinguishable from optimal values at every set size
(two items: t(13) � 0.58, p � 0.56; four items: t(13) � 0.23, p �
0.82; eight items: t(13) � 1.8, p � 0.094).

Because the optimal weights were calculated without fitting
data from the cued task (i.e., by using � and 	 values from Ex-
periment 1), the close correspondence with empirical weights
obtained from Experiment 2 provides strong evidence that opti-
mality principles drive performance on the task. However, I

would also predict that each observer’s weighting factors should
be tuned to their own individual population parameters, and this
was confirmed by comparing the empirical estimates of 
cued

with optimal values calculated on the basis of ML estimates of �
and 	 for the same observer (no significant difference at any set
size: t(6) � 1.2, p � 0.15; optimal and empirical weights obtained
for each observer and set size were significantly correlated: r �
0.46, p � 0.037).

Comparing the recall precision (inverse variance) predicted
under optimal weighting with that of empirically estimated
weights showed that observers attained on average 95% of their
theoretical maximum precision (two items: 95 � 3%; four items:
96 � 2%; eight items: 93 � 3%).

Modifications and extensions to the model
The population coding model described above provides a re-
markably parsimonious account of human recall performance
based only on established principles of neural coding of sensory
parameters. However, to limit the number of free parameters and
for reasons of computational tractability, the model includes a
number of simplifying assumptions that may limit its generality.
Therefore, it is important to demonstrate that the model, and in
particular the key observation that errors deviate from normality
as gain decreases (Fig. 4a,b), is robust against modifications of
these assumptions. Also, the estimates of population gain ob-
tained by fitting the model to data are surprisingly low (on the

a b c d e f

Figure 4. Effects of variations in tuning and noise correlations on decoding errors at low gain. a, Simulated error distributions (middle, normalized by peak probability) and deviations of errors
from the circular normal distribution (bottom) based on decoding a homogeneous population of neurons with broad tuning (top; � � 0.5). b, Simulation results as in a but with narrower tuning
curves (top; � � 0.2). Note that decoding precision is increased compared with a more broadly tuned population with the same gain (compare curves of same color in a and b). c, As in b but with
the addition of a baseline level of activity (illustrated top; f(0) � 0.25). For a specified gain, the presence of baseline activity decreases decoding precision. However, the pattern of deviations from
normality is unaffected (bottom; see also Fig. 5). d, Decoding errors obtained by simulation of neurons with randomly distributed preferred orientations and heterogeneous tuning curves (examples
shown at the top; amplitude, a � 1 � 0.5; width, � � 0.2 � 0.1; baseline, f(0) � 0.25 � 0.125). Heterogeneity had minimal impact on error distributions or deviations from normality, except
to add noise at very low gains. e, As in d but with cosine instead of bell-shaped tuning curves. f, Decoding errors obtained from simulated populations with short-range pairwise correlations in spiking
activity (illustrated top; c0 � 0.25, other parameters as in b). For a specified gain, decoding precision was decreased compared with uncorrelated activity. Unlike the other manipulations shown here
(a– e), the impact of short-range correlations depended strongly on population size (solid lines, M � 100 neurons; dashed lines, M � 1000 neurons). However, the introduction of correlations had
minimal impact on the pattern of deviations from normality (bottom).
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order of 10 2 spikes/s total for the population), and it is important
to establish whether these low firing rates are critical to the suc-
cess of the model or merely a consequence of choices made in its
definition. For example, it should be noted that the length of the
decoding window, which for illustration I set to 100 ms, is in a recip-
rocal relationship with the population gain: halving the decoding
window to 50 ms would simply have doubled the estimates of gain
while leaving the fit of the model to data unchanged.

One important consideration concerns interactions between
the multiple orientations presented in each memory array. For
simplicity of modeling, I assumed that each orientation was en-
coded by an independent subpopulation and that recall was
based on decoding a unique subpopulation identified by the
probe location. However, previous behavioral studies involving
similar tasks have shown that responses are not entirely indepen-
dent of unprobed stimuli (Bays et al., 2009; Gorgoraptis et al.,
2011). In addition to variability in recall of the stimulus, errors
may sometimes occur in identifying which of the stimuli in mem-
ory corresponds to the probe, with the result that an observer
incorrectly reports a stimulus value corresponding to one of the
other, unprobed items in the memory array.

I modified the basic population coding model to incorporate a
probability of reporting a stimulus value decoded from a subpop-
ulation corresponding to one of the unprobed locations. As ex-
pected, taking into account the influence of unprobed items in
this way improved the fit of the model to data from Experiment 1
(log Bayes factor, 4.0 � 2.4; BIC difference, 3.6 � 4.4; AIC differ-
ence, 8.4 � 4.4) with ML parameters corresponding to an �3%
probability of erroneous report per nontarget item ( � 0.03 �
0.01; � � 0.67 � 0.08; 	 � 165 � 37 Hz). This is consistent with
estimates from previous studies and confirms that unprobed re-
sponse errors make a small but significant contribution to overall
error variability. Future extensions of the population coding
model could seek to incorporate these errors more naturally by
relaxing the independence of subpopulations encoding different
stimuli; for example, by adding a continuous spatial component
to their tuning functions.

The present results were based on simulating a homogeneous
population of neurons with uncorrelated activity, identical bell-
shaped tuning functions, evenly distributed preferred stimulus
values, and no spontaneous activity. In reality, sensory neurons
typically exhibit short-range noise correlations and spontaneous
baseline activity levels and vary randomly in their preferred stim-
ulus values, as well as in their tuning curve shapes, widths, and
amplitudes (Zohary et al., 1994; Ecker et al., 2010). Figure 4c–f
plots results of simulations in which each of these simplifying
assumptions was modified. Introducing a baseline level of activ-
ity (Fig. 4c) increased the variability in responses for a given pop-
ulation gain and tuning width (compare with curves of matching
color in Fig. 4b). Introducing random variability into neural tun-
ing functions had the effect of adding random structure to the
response distributions at very low gains but minimal impact on
the distribution of errors (Fig. 4, compare d with c). Modifying
the shape of the tuning functions [from circular normal (Fig. 4d)
to cosine (Fig. 4e)] also had negligible effect on decoding errors.
Introducing short-range correlations between neurons (Fig. 4,
compare f with b) increased variability for a given gain and tuning
width.

In the homogeneous model, error distributions were indepen-
dent of the size of the neural populations encoding each item.
This was attributable to a continuous approximation to the dis-
tribution of preferred stimuli that simulations showed to be ap-
propriate even for very small populations (e.g., �50 neurons)

and the fact that the total activity in the population was fixed by
the population gain 	. This was also true for the model with
baseline activity (assuming this activity level was fixed as a frac-
tion of the peak response of a neuron). Introducing heterogeneity
in tuning curves could theoretically have introduced an effect of
population size, but comparing simulations with 100 (Fig. 4d,e,
solid lines) and 1000 (dashed lines) neurons found minimal ef-
fect on error distribution. However, the effect of short-range cor-
relations between neurons was found to be strongly dependent
on the size of the simulated population: introducing a fixed pair-
wise correlation between neurons with similar tuning produced a
larger increase in variability for a population of 1000 (Fig. 4f,
dashed line) than 100 (solid line) neurons (for full details, see
Materials and Methods).

Critically, none of these modifications changed the funda-
mental pattern observed for the uncorrelated homogeneous pop-
ulation: in every case, decreasing population gain resulted in both
an increase in variability and significant deviations from normal-
ity in the distribution of errors (Fig. 4, bottom row).

The addition of a baseline level of activation to the idealized
population had a strong and consistent effect on response vari-
ability (Fig. 4c). To investigate this effect in more detail, I exam-
ined the ability of this modified model to fit experimental data
from Experiment 1, initially treating baseline activity level as a
free parameter.

The best fit to the data was obtained with a baseline corre-
sponding to 7.6 � 3.2% of peak activation. However, formal
model comparisons favored the model without baseline activity
(log Bayes factor, 3.7 � 1.7), and closer examination indicated
that the modified model was susceptible to overfitting. As shown
in Figure 5a, the principal effect of increasing baseline activation
was to shift ML estimates of population activity to higher values,
without meaningfully altering the quality of the fit to empirical
data [Fig. 5c; there was also a smaller effect on tuning width (Fig.
5b)]. So the present data are consistent with a model in which
decoding is based on a small number of spikes, all of which code
for the stimulus, but it is equally consistent with decoding based
on a much larger number of spikes in which background firing
makes up a substantial proportion of that activity.

This suggests that it is not the level of activity per se that deter-
mines decoding variability but rather the relative magnitude of
signal-to-noise in that activity. Consistent with this interpretation,
the SNR per neuron calculated from ML parameters was found to be
approximately constant across changes in baseline activation (Fig.
4d; baseline 0% vs baseline 90% of peak activity: t(7) � 1.3, p � 0.23).
In other words, increases in noise attributable to stimulus-
independent baseline activity could be countered by increases in
gain, which boosted the strength of the coding signal. When the
changes in signal and noise were matched, error variability and dis-
tribution were unchanged (Fig. 4c). I also found the SNR to have a
simple relationship with memory load in the population coding
model, being inversely proportional to the number of items in mem-
ory (see Materials and Methods).

It may prove possible to account for the effects of interneuro-
nal correlations on model predictions (Fig. 4f) in a similar way:
by considered their effects on the SNR calculated at the level of
the population rather than individual neurons (Zohary et al.,
1994). However, the effects of correlations on a population code
are known to be dependent on details of the correlation structure
(Averbeck et al., 2006) and to interact with other factors, includ-
ing tuning heterogeneity and (as observed here) population size
(Ecker et al., 2011). The computational demands of simulating
large correlated populations make a full exploration of the con-
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sequences for error distributions, or fitting such a model to be-
havioral data, impractical using the present methods.

Comparison with discrete and variable
resource-based models
I compared the population coding model to two previously de-
scribed models of memory errors, both based on distribution of a
limited representational medium or resource. In the slots  av-
eraging model (Zhang and Luck, 2008), the representational me-
dium is subdivided into a small number of indivisible quanta, or
slots, distributed between items in whole units. The model as-
sumes that error in each memory representation has a circular
normal distribution, and recall estimates are obtained by averag-
ing over representations.

Figure 6a– d shows predictions of the slots  averaging model
based on ML parameters obtained from the data in Experiment 1
(M � 4.0 � 0.63; �1 � 0.63 � 0.05). As the number of items
increases, the mean number of memory quanta allocated to each
item declines, providing a good quantitative fit to the observed
changes in recall variance (Fig. 6c). However, the model does not
provide a good account of the deviations from normality ob-
served in empirical data, predicting large deviations (positive
kurtosis) only for supra-capacity arrays (Fig. 6d).

In particular, I observed substantial deviations from normal-
ity in recall for a single visual feature (Fig. 2, left column), in
which the slots  averaging model predicts errors will be nor-
mally distributed, with kurtosis around 0. A formal model com-

parison confirmed that the population
coding model provided a significantly
better fit to the experimental data than the
slots  averaging model (log Bayes factor,
11.8 � 4.3; BIC/AIC difference, 22.8 �
8.6; model comparison favored the popu-
lation coding model in seven of eight
subjects).

The slots  averaging model can be
viewed as a two-stage hierarchical model.
The first stage determines the number of
slots allocated to the probed item and
hence the precision with which the item is
stored. The second stage consists of draw-
ing a random sample from a normal dis-
tribution with the specified precision: the
outcome determines the error in recall. In
most cases, it is not possible to equally dis-
tribute slots between memory items;
therefore, the first stage (as well as the sec-
ond stage) is probabilistic: the probed
item will be stored with different levels of
precision from trial to trial.

Figure 6a plots the cumulative distri-
bution over precision predicted by the
slots  averaging model with ML param-
eter values obtained for a representative
subject. Because slots are allocated in dis-
crete quanta, this cumulative distribution
consists of a series of steps: each step corre-
sponding to a different number of slots allo-
cated to the probed item (here I assumed
that slots are allocated as evenly as possible
between items, but other allocation policies
are possible and would predict different dis-
tributions over precision).

The recall advantage for a cued item seen in Experiment 2 has
a possible explanation within the slots  averaging model: more
slots could be allocated to the cued item than to uncued items,
increasing the precision of its storage. However, model compar-
ison again showed that this account (ML parameters: M � 5.3 �
1.0; �1 � 0.89 � 0.12; Acued

N�2 � 3.3 � 0.68, Acued
N�4 � 2.0 � 0.54,

Acued
N�8 � 1.7 � 0.56) provided a significantly poorer fit to the data

than the population coding model (log Bayes factor, 26.3 � 8.0;
BIC/AIC difference, 45.6 � 16.4; model comparison favored
population coding model in seven of eight subjects).

An alternative account for deviations from normality (van den
Berg et al., 2012) is based on distribution of a continuous, rather than
quantized, memory resource. In this model, the amount of resource
the probed item receives, and hence the precision with which it is
stored, varies randomly from trial to trial around a mean determined
by the number of items. The model specifies a gamma distribution
over precision to describe this variability (Fig. 4e). Like the slots 
averaging model, this “variable precision” model assumes that the
recall error is determined by drawing a random sample from a nor-
mal distribution with the specified precision.

Figure 6e– h shows predictions of the variable precision model
based on ML parameters obtained from the data in Experiment 1
(J�1 � 17.6 � 3.1; 
 � 1.36 � 0.09; � � 5.0 � 0.6). The model
provided a significantly better account of the data than the slots 
averaging model (log Bayes factor, 12.7 � 4.2; BIC difference,
19.8 � 8.2; AIC difference, 24.6 � 8.2; model comparison fa-
vored the variable precision model in six of eight subjects),

a b

dc

Figure 5. Effects of baseline activity on ML parameters and decoding errors. a, Population gain (ML values for subjects in
Experiment 1) as a function of baseline activation of the neural population (shaded area indicates�1 SE). Note that the population
gain that best fits the data rises steeply as the proportion of activity attributable to baseline increases. b, ML values of the tuning
width � as a function of baseline activation. c, Error distributions corresponding to ML parameters of the model with different
baseline activation levels (1– 8 items). It is not possible to reliably distinguish on the basis of error distributions between decoding
of a population with low activity of which little or none is attributable to baseline (e.g., black, blue curves) and a population with
substantially higher activity of which a much larger proportion is attributable to baseline (e.g., green, red curves). d, SNR per
neuron as a function of baseline activation, calculated from ML parameters. SNR shown is for a population encoding a single
stimulus. The SNR corresponding to observed error distributions is approximately independent of the baseline activity level.
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including the changes of kurtosis with set size (Fig. 6h). Compar-
ison with the population coding model did not find consistent
differences between the models in their ability to fit data from
Experiment 1 [log Bayes factor, �0.83 � 1.6; BIC difference,
3.0 � 3.4; AIC difference, �1.8 � 3.4; model comparison favored
population coding model (positive values) in four (AIC), five
(Bayes factor), or six (BIC) of eight subjects].

The variable precision model does not describe how precision
would be distributed under unequal allocations of resource and,

in particular, the consequences for uncued items of increasing
precision for a cued item are currently undefined, so it was not
possible to obtain predictions under the model for Experiment 2.
As for the population coding model, incorporating reports of
unprobed items (see above) improved the fit of both slots 
averaging and variable precision models to data, but the conclu-
sions of model comparison were unchanged.

I examined whether errors generated by the population cod-
ing model, like the two previous models, could be described in
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Figure 6. Comparison with resource-based models of working memory errors. a, Errors under the slots  averaging model are drawn from a finite mixture of normal distributions of different
widths, corresponding to different numbers of slots allocated to the probed item, and plotted here as a cumulative probability over precision (based on ML parameters for representative subject; Fig.
2a). Different set sizes are indicated by different colors (overlying lines are slightly shifted horizontally for ease of viewing). Note that, for large set sizes, there is a non-zero probability that an item
receives zero slots, in which case errors are drawn from a distribution with zero precision, i.e., the uniform distribution. b, Error distributions corresponding to the slots  averaging model
parameters illustrated in a. c, Variance of error in recalled orientation for human observers (black symbols) and for the slots  averaging model with ML parameters (red curve, dashed lines indicate
�1 SE). d, Kurtosis of recall errors for subjects (black symbols) and the slots  averaging model (red curve). e– h, The variable precision model. Errors are drawn from an infinite mixture of normal
distributions of different widths, shown here as a cumulative probability over precision (e). Corresponding error distributions are shown in f; variance and kurtosis corresponding to ML parameters
in g and h. i–l, In the population coding model, the precision of recall is correlated with the total number of spikes contributing to the estimate. The cumulative probability and corresponding
precision of different spike counts is shown in i, for the model with zero baseline activity. Error distributions are shown in j. Note that, for large set sizes, there is a non-zero probability of zero spikes
occurring within the decoding window, resulting in an estimate with zero precision, i.e., uniformly distributed. The error distributions (k) corresponding to a particular precision in i are approximately
normally distributed: deviations from circular normal are plotted in l. m–p, Corresponding results for the population coding model incorporating baseline activity (example shown, 50% of peak).
Spike counts corresponding to a specified precision (m) are substantially higher than in the zero baseline model, and there is negligible probability of zero spikes; errors corresponding to a specified
spike count (o) deviate strongly from normal ( p); the resulting error distributions (n) are indistinguishable from the zero baseline case (j).
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terms of a distribution over precision. Unlike the slots  averag-
ing and variable precision models, which both incorporate two
independent sources of noise in the generation of recall errors, in
the population coding model all errors arise from a single source
of noise: Poisson variability in spike generation. Nonetheless, it
may be possible to find a mathematical description of the non-
normal output of the population coding model in terms of a
mixture of normal distributions of different precisions, as in the
other two models. In particular, I noted that the magnitude of the
decoding error was correlated with the total number of spikes
generated during the decoding window by simulated neurons
encoding the probed item: considering only trials on which a
certain number of spikes were generated, error variability was
larger for smaller spike counts (Fig. 6k).

Figure 6i illustrates how this observation could lead to a dis-
tribution over precision: each step in the cumulative probability
function corresponds to a different total spike count and hence a
different precision. Because the distribution of individual spike
counts is independent Poisson, the distribution of total spike
counts is also Poisson. The distribution over precision indeed
bears resemblance to that dictated by the previous models, par-
ticularly the variable precision model (Fig. 6e). Furthermore, al-
though the distribution of error corresponding to a given spike
count is in most cases not normal, the deviations from normality
are relatively small (Fig. 6k,l).

Based on Figure 6i, it would be tempting to conclude that the
integer nature of spiking is critical to the ability of the population
coding model to reproduce deviations from normality seen in the
data. In particular, at low gains, I observed a non-zero probability
of zero spikes occurring during the decoding period (e.g., with
probability 0.2 for the representative subject tested with 8 items,
red line). However, as indicated above, these very low gains may
be a consequence of the simplified model of neural populations
used in simulation, with both spontaneous baseline activity (Figs.
4c, 5) and interneuronal correlations (Fig. 4f), potentially con-
tributing to increases in the gain at which a particular error dis-
tribution is observed. Figure 6m–p shows an example of results
obtained from the version of the model incorporating baseline
activity ( f(0) � 0.5; ML parameters of � and 	 for representative
subject). As described above, this instantiation of the model pro-
duces fits to data that are indistinguishable from the zero-
baseline model (Fig. 6, compare n with j) but at substantially
higher gains. Here the probability of obtaining zero spikes is neg-
ligible, and, for a given population gain, there is relatively little
variation in precision between trials with low and high spike
counts (note steeper curves in Fig. 6m compared with i).

As shown in Figure 6, o and p, the distribution of errors
corresponding to a given spike count is strongly non-normal
for populations of neurons with significant baseline activity.
An examination of spike counts in the simulations of hetero-
geneous and correlated populations (Fig. 4d,f ) indicated that
each of these modifications also had the effect of increasing
non-normality of error distributions corresponding to a given
spike count.

These results suggest a degree of mathematical similarity be-
tween the population coding model and previous models based
on mixtures of normal distributions, which may provide an ex-
planation at the neural level for the success of these cognitive-
level models. However, the present evidence suggests that the
basis for this correspondence in the total spike count may not
extend straightforwardly to more realistic populations, com-
posed of correlated neurons with spontaneous activity and vary-
ing tuning shapes and widths.

Additionally, both slots  averaging and variable precision
models assume that the precision of a memory representation is a
stable property determined at encoding, whereas the total spike
count, like individual spike counts, is a random variable that
varies from observation to observation. Recent results indicated
that observers possess some knowledge of their uncertainty about
a remembered stimulus on a trial-by-trial basis (Fougnie et al.,
2012; Rademaker et al., 2012). Within the population coding
model, this might correspond to knowledge of the total number
of spikes on which a decoded stimulus estimate is based. How-
ever, it should be noted that an ideal observer would consider
which neurons generated the spikes (and hence the full likelihood
function), rather than just the total spike count, in assessing
reliability.

Discussion
I have shown that a population coding model of the kind devel-
oped to explain responses to immediate sensory stimulation
(Pouget et al., 2000) provides an accurate account of errors in
short-term memory. In particular, deviations from the normal
distribution that are characteristic of memory errors (Bays and
Husain, 2008; Zhang and Luck, 2008; Fougnie et al., 2012; van
den Berg et al., 2012) were found to be a predictable and general
outcome of decoding stimulus parameters stored in the activity
of tuned neurons. Critically, these deviations only became signif-
icant when the ratio of neural signal-to-noise was low and esti-
mation variability consequently high.

The effect of increasing memory load on recall errors was
successfully explained by a decrease in the gain of neural activity
in inverse proportion to the number of items (Fig. 2). This is
consistent with single-neuron and fMRI studies that have ob-
served decreases with memory load in the information about a
stimulus carried by neural activity (Buschman et al., 2011; Em-
rich et al., 2013). In the present model, the decrease in gain was
implemented by divisive normalization, an established principle
of neural processing whereby individual neuronal responses are
divided by the summed activity of a neural population (Caran-
dini and Heeger, 1994, 2012; Olsen et al., 2010; Ohshiro et al.,
2011). The result was that the total excitation of neurons repre-
senting all memory stimuli was constant, providing a putative
biological basis for a limited working memory “resource”
(Palmer, 1990; Wilken and Ma, 2004; Bays and Husain, 2008; for
a similar proposal in the context of multiple object tracking, see
Ma and Huang, 2009; for a related hypothesis for temporal se-
quence memory, see Bradski et al., 1994).

In a normalized population, the effects of attention on sensory
responses can be modeled as a multiplicative increase in the input
drive to neurons encoding the attended stimulus or location
(Reynolds and Heeger, 2009). Here I found evidence that a sim-
ilar mechanism underlies observers’ ability to control the con-
tents of working memory. A cued item with higher probability of
test was recalled with greater precision than other items, consis-
tent with previous demonstrations of recall advantages for salient
or behaviorally relevant stimuli (Bays and Husain, 2008; Shao et
al., 2010; Bays et al., 2011a; Gorgoraptis et al., 2011; Melcher and
Piazza, 2011). Differences in the variability and distribution of
recall errors for cued and uncued items were successfully repro-
duced by weighting of the cued representation by a multiplicative
gain factor (Fig. 3).

The population coding model allowed me to make quantita-
tive predictions regarding the optimal weighting of stimuli in
memory that would minimize errors on the task. For a fixed ratio
of cued/uncued test probability, I found that observers should
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increasingly weight memory representation in favor of the cued
stimulus as load increased. This prediction was borne out in the
distributions of observers’ errors, demonstrating that human ob-
servers can fine-tune the contents of working memory to attain
behavioral goals.

An important concept in models based on divisive normaliza-
tion is that of the normalization pool, the pool of neurons whose
summed activations provide the denominator of the divisive op-
eration (Carandini and Heeger, 1994, 2012). In the model con-
sidered here, every memory neuron was a member of the
normalization pool for every other neuron, with the result that
every stimulus competed on an equal basis for representation in
the population. Although this simple model proved very effective
at accounting for human performance in the present experi-
ments, it should be noted that divisive normalization operating
across populations widely separated in space has not yet been
identified experimentally. Note also that the model of divisive
normalization used here is abstract: any realistic network imple-
mentation of normalization would be expected to itself suffer the
consequences of spiking variability. One possible outcome is cor-
relations in error magnitude across items on a single trial.

Future work could also consider the composition of the nor-
malization pool in more detail. For instance, it is well established
that competition for working memory storage is weaker between
features from different feature dimensions (e.g., orientations vs
colors) than within a dimension (Olson and Jiang, 2002; Wheeler
and Treisman, 2002; Fougnie et al., 2010; Bays et al., 2011b); this
could be a consequence of normalizing the activation of a neuron by
a pool of neurons mainly selective for the same feature dimension.
There is also some evidence that competition for working memory is
weaker within than between visual hemifields (Umemoto et al.,
2010; Buschman et al., 2011), which could reflect a greater contribu-
tion of within-hemisphere than between-hemisphere neuronal con-
nections to the normalization computation.

In common with many previous theoretical studies of popu-
lation coding (Snippe and Koenderink, 1992; Seung and Sompo-
linsky, 1993; Wilke and Eurich, 2002), the model of neural
responses used here incorporated simplifying assumptions that
are at best approximations to how real neuronal populations
behave. This simple model had two key advantages that made it
highly suitable for fitting to experimental data: (1) it was rela-
tively tractable, both analytically and computationally; and (2) it
had very few free parameters. Investigating a number of modifi-
cations to this model that would bring it closer in line with the be-
havior of cortical neurons recorded in vivo confirmed that the
strong deviations from the normal distribution that make the
model such a good fit to human recall errors are mostly insen-
sitive to factors such as heterogeneity in tuning functions, corre-
lations between neurons, and spontaneous activity (Fig. 4).
However, these results also urge some caution in interpreting the
population parameters obtained from fitting the unmodified
model to data.

Specifically, the levels of population activity in the model that
reproduce human levels of variability in recall would appear to
indicate decoding of a very small number of spikes (for an illus-
tration, see Fig. 6i). Although this is consistent with the neuro-
physiological observation that individual neurons and even
individual spikes may carry a great deal of information about sensory
stimuli (Britten et al., 1992), the results of simulations shown in
Figures 4 and 5 suggest that these very low population gains could be
an artifact of the simplifying assumptions of the model: both the
spontaneous activity and correlations observed in real neural popu-

lations could contribute to increases in the population gain corre-
sponding to empirically observed levels of variability.

The finding that working memory representations closely re-
semble sensory representations with a lower SNR finds a parallel
in recent fMRI studies that have successfully decoded visual
memories from signals in early visual cortex (Harrison and Tong,
2009; Ester et al., 2013). Although the initial presentation of vi-
sual stimuli evokes strong activity in these regions, the delay-
period signal on which decoding is based is much weaker and
mostly independent of memory load (Emrich et al., 2013), as
expected for a normalized population. However, it remains to be
established whether working memory is subserved by the same
neurons that encode immediate sensory representations or by an
analogous mechanism in a separate network.

An important prediction of the population coding model is
that the distribution of recall errors depends on the width of
neuronal tuning curves. The tuning widths estimated from the
present experiments correspond quite well to those observed in
recordings from orientation-selective neurons in primary visual
cortex (Ecker et al., 2010). I suggest that the pattern of errors in
recall from working memory provides a means of probing the
neural representation of different features; this approach could
profitably be extended to multidimensional feature spaces, such
as color or location.

The present model represents a steady-state approximation to
sustained activity, in which mean firing rates are constant over
time. I have not attempted to model the initial burst of activity
typically seen in sensory neurons after stimulus onset, which
could reflect the initial non-normalized input from earlier sen-
sory areas. Furthermore, working memory representations are
typically short-lived, decaying on a timescale of seconds (Brown,
1958; Vogels and Orban, 1986). This may be a consequence of
drift, over time, in the patterns of neural activity encoding stim-
ulus parameters (Compte et al., 2000; Burak and Fiete, 2012).
Persistent activity in recurrent networks diffuses because of neu-
ral noise, and the rate of this diffusion is related to the accuracy
with which the memory state can be decoded by an ideal observer
(Burak and Fiete, 2012). So the same factors that influenced de-
coding precision in the present study could also affect the rate at
which memories degrade over longer time periods.

One testable prediction of this account is that rate of decay
should increase with memory load. A corollary is that boosting
the gain of neurons encoding one particular stimulus during
maintenance would protect that stimulus from decay, at the cost
of more rapid decay for other stimuli—this might provide an
explanation for the “retro-cue effect,” i.e., the recall advantage
seen for an item cued long after its presentation (Griffin and
Nobre, 2003; Matsukura et al., 2007; Pertzov et al., 2012).
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