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a b s t r a c t

An influential conception of visual working memory is of a small number of discrete memory “slots”,
each storing an integrated representation of a single visual object, including all its component features.
When a scene contains more objects than there are slots, visual attention controls which objects gain
access to memory.

A key prediction of such a model is that the absolute error in recalling multiple features of the same
object will be correlated, because features belonging to an attended object are all stored, bound together.
Here, we tested participants’ ability to reproduce from memory both the color and orientation of an object
indicated by a location cue. We observed strong independence of errors between feature dimensions even
for large memory arrays (6 items), inconsistent with an upper limit on the number of objects held in
memory.

Examining the pattern of responses in each dimension revealed a gaussian distribution of error cen-
tered on the target value that increased in width under higher memory loads. For large arrays, a subset
of responses were not centered on the target but instead predominantly corresponded to mistakenly
reproducing one of the other features held in memory. These misreporting responses again occurred
independently in each feature dimension, consistent with ‘misbinding’ due to errors in maintaining the
binding information that assigns features to objects.

The results support a shared-resource model of working memory, in which increasing memory load
incrementally degrades storage of visual information, reducing the fidelity with which both object fea-
tures and feature bindings are maintained.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

What limits the visual information that can be maintained in
short-term memory? Historically, this question has been addressed
by examining the frequency of recall errors as memory load is
manipulated, either in studies of ‘partial report’ (Irwin, 1991, 1992;
Irwin & Andrews, 1996; Sperling, 1960) or change detection (Luck &
Vogel, 1997; Pashler, 1988; Phillips, 1974; Rouder et al., 2008; Todd
& Marois, 2004; Vogel, McCollough, & Machizawa, 2005; Vogel,
Woodman, & Luck, 2001). The results of these studies have com-
monly been interpreted as supporting a limit on the number of
objects that can be simultaneously represented in working mem-
ory. In one influential version of this model, the objects present in
a visual scene compete for storage in a small number of indepen-
dent memory ‘slots’. Each slot maintains a representation of a single
integrated object (incorporating all its features, bound together)
with high fidelity, and the allocation of visual attention determines
which objects gain access to a slot (Cowan, 2001; Hollingworth
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& Henderson, 2002; Irwin & Andrews, 1996; Luck & Vogel,
1997).

Recently, this conception of working memory has been chal-
lenged by studies examining how recall errors are distributed in
the space of possible responses, based on discrimination (Bays &
Husain, 2008, 2009; Palmer, 1990) or reproduction tasks (Bays,
Catalao, & Husain, 2009; Wilken & Ma, 2004; Zhang & Luck, 2008,
2009). These studies have revealed strict limits on the fidelity with
which multiple visual objects can be maintained: the precision with
which each visual feature is stored declines rapidly as the total
number of items in memory increases. This finding is difficult to
reconcile with the concept of storage in independent slots, and has
led to the development of an alternative, shared-resource account
of working memory (Bays & Husain, 2008; Wilken & Ma, 2004).
According to this proposal, a single memory resource is flexibly dis-
tributed between the elements of a visual scene. As more items are
stored, less resource is available per item, with the result that the
features of each item are stored with increasing variability (‘noise’).
Visual attention provides flexible control over distribution of this
resource, such that salient or goal-relevant items are stored with
enhanced resolution (Bays & Husain, 2008).

Importantly, in contrast to the slot model, this resource-based
account does not predict a fixed upper limit on the number of

0028-3932/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neuropsychologia.2010.12.023



P.M. Bays et al. / Neuropsychologia 49 (2011) 1622–1631 1623

objects that can be maintained. Indeed a mathematical model based
on shared resources (Bays & Husain, 2008) predicts the appear-
ance of such a capacity limit in change detection tasks, previously
considered evidence in favor of a fixed slot model. Nonetheless, a
number of attempts have been made to find a compromise position
between the two models, in which varying resolution of storage
co-exists with a fixed limit on the number of objects that can be
stored (Alvarez & Cavanagh, 2004; Awh, Barton, & Vogel, 2007;
Zhang & Luck, 2008). In particular, recent studies by Luck and col-
leagues (Zhang & Luck, 2008, 2009) have presented results from a
color reproduction task which appear to provide support for such
a ‘hybrid’ model.

In these studies, participants were presented with a memory
array of colored squares. After a brief retention interval, one array
location was indicated and participants were required to report the
color they recalled at that location by clicking on a color wheel. The
authors analysed the distribution of responses on the color wheel
as a mixture of two components: a gaussian distribution centered
on the correct color of the probed item, and a uniform distribution
spread equally over all possible responses. The gaussian compo-
nent indicates variability in the stored representations of the colors
in the memory array. Consistent with a resource-model account,
the variability with which each item was stored depended on the
total number of items in memory, as indicated by an increase in the
gaussian width with increasing memory load. In addition, however,
Zhang and Luck proposed that the uniform component corresponds
to a proportion of trials on which subjects choose a response at
random. As in a slot model, this might occur if no information was
stored about the probed object as the result of exceeding an upper
limit on the number of objects that can simultaneously be main-
tained in working memory.

Here we put this interpretation to the test, by examining the
joint distribution of errors when subjects are required to repro-
duce from memory two different features (color and orientation)
belonging to the same probed object. If only a subset of objects in
an array can be stored, the absolute error in reporting color and ori-
entation should be correlated, and the joint distribution of errors
in the dual-feature task should consist of two components: one in
which the object is stored and both features are recalled (with gaus-
sian variability), and one in which the object is not stored and both
responses are random. Neither result was observed: instead our
results revealed that both the absolute error and the occurrence
of uniform responses were strongly independent across feature
dimensions.

This finding is inconsistent with the hypothesis of a fixed upper
limit on the number of objects stored in memory. Instead these
results support the proposal of Wheeler and Treisman (2002) that
visual features in different dimensions are maintained in indepen-
dent memory stores. These authors’ conclusions were based in
part on the observation of ‘binding errors’ in a change detection
task: errors caused by incorrectly combining in memory features
that belong to different objects (Allen, Baddeley, & Hitch, 2006;
Robertson, 2003; Treisman, 1998; Treisman & Schmidt, 1982;
Wheeler & Treisman, 2002; Wolfe & Cave, 1999).

We have previously proposed (Bays et al., 2009) that the uni-
formly distributed responses interpreted by Zhang and Luck (2008)
as random guesses may instead correspond to mistakenly report-
ing the features of one of the other items held in memory. Here, by
analysing the frequency of these ‘misreporting’ errors within and
across feature dimensions, we confirm that they are the result of
misbinding features held in independent memory stores, consistent
with the storage of visual features in separate sensory representa-
tions (Pasternak & Greenlee, 2005). These results have important
implications for the nature of visual working memory representa-
tions and the locus of binding of separate features belonging to an
object.

2. Materials and methods

2.1. Experimental protocol

Ten subjects (seven male, three female; age 22–26) participated in the study
after giving informed consent. All had normal or corrected-to-normal visual acuity;
none reported any difficulty in making color discriminations. Stimuli were displayed
on a 21-in. CRT monitor at a viewing distance of 60 cm. Eye position was monitored
online at 1000 Hz using a frame-mounted infra-red eye tracker (Eyelink 1000, SR
Research Ltd., Canada).

Each trial began with the presentation of a central fixation cross (white, diameter
0.75◦ of visual angle) against a black background. Once a stable fixation was recorded
on the cross, a memory array was presented, consisting of a number of colored
oriented bars (0.75◦ × 4◦) randomly distributed around fixation at eccentricities in
the range 6–10◦ , with a minimum center-to-center separation of 6◦ between items
(example in Fig. 1a). The color and orientation of each item were independently
chosen at random from two circular parameter spaces. The orientation parameter
space corresponded to the range of angles 0–180◦ (i.e. the full range of possible bar
orientations). For color, the parameter space was defined by a circle in CIE L*a*b*
coordinates with constant luminance (L* = 50), center at a* = b* = 20, and radius 60.

The memory array was presented for 2 s, followed by a pattern mask for 100 ms
and then a blank retention interval (900 ms). The pattern mask was included to
ensure iconic memory did not contribute to performance. A single (probe) item
was then presented at one randomly chosen location from the preceding mem-
ory array. Subjects were instructed to adjust the orientation and color of the probe
item to match the features of the item that had been presented at the same loca-
tion in the memory array (the target). The probe’s features were adjusted using two
input dials (PowerMate USB Multimedia controller, Griffin Technology, USA) one
operated with each hand (randomly assigned). Turning one dial caused the probe
to rotate through the range of possible orientations (Fig. 1b, top); turning the other
dial caused the probe’s color to cycle through the space of possible colors (Fig. 1b,
bottom). The probe’s initial features were randomly assigned. Subjects could adjust
the two dials in any order or simultaneously, and indicated adjustment was com-
plete by depressing the center of either dial. Accuracy was stressed, and responses
were not timed.

Each subject completed 300 trials in total: a block of 250 trials with six-item
memory arrays (high-load), and a block of 50 trials with just one item in each
array (low-load). Fewer trials were required in the low-load condition because there
was no possibility of misreporting a non-target item, greatly simplifying the data-
intensive modeling component of the analysis (Section 2.2.3). High- and low-load
blocks were completed in a counter-balanced order.

Any trial on which gaze deviated more than 2◦ from the central cross during pre-
sentation of the memory array was aborted and restarted with new feature values.
This constraint prevented subjects fixating individual memory array items, which
otherwise might bias storage towards particular objects in the array (Bays & Husain,
2008).

2.2. Analysis

2.2.1. Within-dimension errors
Our initial analysis examined errors in recall of color and orientation separately.

Responses in each dimension were analysed in terms of the circular parameter space
of possible feature values (range −� to � radians; Fig. 1b). For each trial, a measure
of recall error in each dimension was obtained by calculating the angular deviation
between the feature value reported by the subject and the feature value of the target
item in the memory array. To obtain measures of performance comparable across
feature dimensions, we calculated the recall bias, defined as the mean of the recall
error, and precision, defined as the reciprocal of the standard deviation of error. As
in a previous study (Bays et al., 2009), we used the definition of mean and standard
deviation for circular data given by Fisher (1993), and subtracted from the precision
estimate the value expected by chance (i.e. if the subject had responded at random
on each trial).

To investigate the source of recall errors, we first examined the distribution of
error in each feature dimension with respect to a probabilistic model of memory
performance described by Zhang and Luck (2008). This model proposes that errors
in a reproduction task arise from two sources: gaussian variability in memory for
the target feature, and a fixed probability on each trial of guessing at random. The
distribution of responses is therefore described by a mixture model (McLachlan &
Peel, 2000) of general form:

p(�̂) =
∑

k

˛kpk

where �̂ is the reported feature value, ˛k is the probability that a response comes
from the kth component (

∑
˛k = 1), and pk is the probability density function

describing the distribution of responses under that component. Zhang and Luck’s
model has two components (k = 2) whose probability density functions are given in
the first two rows of Table 1. The target component (T) corresponds to noisy recall
of the target feature, resulting in a distribution of responses drawn from a circular
gaussian (von Mises) distribution centered on the true feature value of the target;
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Fig. 1. Precision of working memory in a dual-feature reproduction task. (a) Subjects were presented with an array of colored, oriented bars, followed by a pattern mask. After
a blank retention interval, a probe appeared and subjects used two response dials to adjust its color and orientation to match the item at the corresponding location in the
memory array (the target). (b and c) Turning each dial cycled the probe through a circular parameter space of possible colors or orientations. Some examples of orientations
(b) and colors (c) are shown corresponding to different points in each response space. (d) Recall precision as a function of memory load: 1 object (low) versus 6 objects (high).
Precision is defined as the reciprocal of the standard deviation of error in subjects’ responses: zero indicates chance performance.

the uniform component (U) corresponds to random guessing, producing a uniform
distribution of responses across all possible feature values.

Maximum likelihood estimates of the mixture parameters {˛T, ˛U} and �, the
standard deviation of the von Mises distribution (Jammalamadaka & Sengupta,
2001), were obtained separately for each feature dimension, subject, and array size
in MATLAB using a custom-written expectation-maximization algorithm (Bilmes,
1998; Dhillon & Sra, 2003; see also Lawrence, 2010). The optimization procedure
was repeated from a range of different initial parameter values to ensure that global
maxima were obtained.

2.2.2. Joint distribution of color and orientation errors
In order to model the joint distribution describing responses in both feature

dimensions, we extended the mixture model to include both color and orientation
responses:

p(�̂O, �̂C ) =
∑

k

˛kpk

where �̂O is the reported orientation value and �̂C is the reported color value. On each
trial, the response for each feature dimension could come from target or uniform dis-
tributions, resulting in four possible combinations of color and orientation response
distributions (Table 2, rows 1–4). Maximum likelihood estimates were obtained as
above for mixture parameters {˛TT, ˛UT, ˛TU, ˛UU} and �O and �C , the standard devi-

Table 1
Mixture model components describing the distribution of responses within a single
feature dimension.

k Mixture component Response type Probability density (pk)

1 T Target �� (�̂ − �)

2 U Uniform 1
2�

3 N Non-target 1
m

m∑
i

�� (�̂ − ϕi)

� is the true feature value of the target item, and �̂ the feature value reported by the
subject (range −� < � ≤ �). ϕi is the true feature value of the ith non-target item (m
in total). �� is the von Mises distribution with mean zero and standard deviation �.
Diagrams indicate how the response probabilities contributed by each component
are distributed around target (T) and non-target (N) feature values (for illustration,
only two non-targets are shown). The model proposed by Zhang and Luck (2008) is
described by rows 1–2 (target and uniform components). Bays et al. (2009) added a
third component (row 3) to distinguish non-target from uniform responses.

ations of the von Mises distributions describing variability in orientation and color
recall, respectively.

We examined two opposing hypotheses regarding the relationship between
errors in the two feature dimensions. Under the hypothesis that color and orien-
tation errors are fully independent, the joint response distribution should comprise
a mixture of all four response combinations, occurring at the frequencies predicted
by the product of the marginal probabilities obtained separately for each dimen-
sion (Section 2.2.1). That is, the parameters ˛•• describing the frequencies of each
combination of response types can be predicted directly from the parameters ˛O

•
and ˛C

• obtained by fitting orientation and color responses separately: ˛TT = ˛C
T ˛O

T ,
˛TU = ˛O

T ˛C
U, ˛UT = ˛O

U˛C
T , and ˛UU = ˛O

U˛C
U.

Under the opposing hypothesis that color and orientation errors are fully cor-
related, the joint response distribution should comprise a mixture of only two
components: trials on which both the color and orientation of the target are
reported, and trials on which both responses are random. Hence mixture param-
eters ˛UT and ˛TU (corresponding to trials in which one response is from the target
distribution and one from the uniform) have predicted values of zero. This hypothe-
sis predicts mixture parameters for target–target and uniform–uniform responses
should equal the corresponding parameters obtained for orientation and color
separately, i.e. ˛TT = ˛O

T = ˛C
T and ˛UU = ˛O

U = ˛C
U. Because the marginal values of

these parameters obtained in Section 2.2.1 were not exactly identical, for mod-
eling purposes we averaged across feature dimensions: ˛TT = (˛O

T + ˛C
T )/2, ˛UU =

(˛O
U + ˛C

U)/2.
As neither hypothesis was fully consistent with our results, we quantified the

strength of correlation between feature dimensions by calculating ˚2, the equivalent
for binary variables of the coefficient of determination r2:

˚2 = (˛TT˛UU − ˛UT˛TU)2

˛T•˛U•˛•U˛•T

where ˛T• = ˛TT + ˛TU, etc. Like r2, this measure falls in the range 0 ≤ ˚2 ≤ 1, where
˚2 = 0 indicates complete independence between feature dimensions, and ˚2 = 1
indicates full correlation.

2.2.3. Misreporting errors
Bays et al. (2009) proposed that the majority of responses captured by the uni-

form component of the Zhang and Luck (2008) model are not a result of random
guessing. Instead they are instances of subjects mistakenly reporting the feature
value of one of the non-target items in the memory array (misreporting errors). As
in our previous study, we assessed the frequency of these errors by adding a third
component to the mixture model describing responses in each feature dimension
(Table 1, row 3). Responses due to this non-target component (N) are drawn with
equal probability from von Mises distributions centered on the feature values of each
of the non-target items in the memory array. Because the target item is unknown
at the time of storage, the standard deviations of target and non-target von Mises
distributions are equal in this model. Maximum likelihood estimates for this three-
component model were obtained separately for color and orientation responses, as
above.

To capture the joint distribution of color and orientation responses under this
expanded model requires ten components (Table 2, rows 1–10). On each trial, the
response for each feature dimension can come from target, non-target, or uni-
form distributions, resulting in nine possible combinations of color and orientation
response types. In addition, on trials where both responses reflect non-target fea-
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Table 2
Mixture model components describing the joint distribution of responses in two feature dimensions.

k Mixture component Response type Probability density (pk)

Orientation Color

1 TT Target Target ��O
(�̂O − �O)��C

(�̂C − �C )

2 UU Uniform Uniform
(

1
2�

)2

3 TU Target Uniform ��O
(�̂O − �O) 1

2�

4 UT Uniform Target 1
2� ��C

(�̂C − �C )

5 N = N Same non-target 1
m

m∑
i

��O
(�̂O − ϕO

i
)��C

(�̂C − ϕC
i

)

6 N /= N Different non-targets 1
m(m−1)

m∑
i

m∑
j /= i

��O
(�̂O − ϕO

i
)��C

(�̂C − ϕO
j

)

7 NT Non-target Target 1
m

m∑
i

��O
(�̂O − ϕO

i
)��C

(�̂C − �C )

8 TN Target Non-target ��O
(�̂O − �O) 1

m

m∑
i

��C
(�̂C − ϕC

i
)

9 NU Non-target Uniform 1
m

m∑
i

��O
(�̂O − ϕO

i
) 1

2�

10 UN Uniform Non-target 1
2�

1
m

m∑
i

��C
(�̂C − ϕC

i
)

�O and �C are the true orientation and color values, respectively, of the target item (range −� < � ≤ �). �̂O and �̂C are the corresponding feature values reported by the subject.
ϕO

i
and ϕC

i
are true feature values of the ith non-target item (m in total). ��O

and ��C
are von Mises distributions with mean zero and standard deviations �O and �C ,

corresponding to variability in recall of orientation and color, respectively. Rows 1–4 describe the extension to two feature dimensions of Zhang and Luck’s (2008) model,
including only target and uniform components; rows 1–10 describe the corresponding expansion of the Bays et al. (2009) model, distinguishing non-target from uniform
responses.

tures, they can be due to reporting the orientation and color of the same non-target
(N = N), or the orientation of one non-target and the color of a different non-target
(N /= N).

We again compared the predictions of two opposing hypotheses regarding
the relationship between misreporting errors in the two feature dimensions.
Under the hypothesis of full correlation, non-target responses occur when the
subject misidentifies which item from the memory array has been probed, result-
ing in color and orientation responses centered on the feature values of one
of the non-targets. The frequency of these same non-target responses should
therefore be equal to their marginal frequencies obtained separately for orien-
tation and color responses: for modeling purposes we averaged across feature
dimensions as above, ˛N=N = (˛O

N + ˛C
N)/2. Other combinations involving non-

target responses have zero probability under this hypothesis: ˛NT = 0, ˛TN = 0 and
˛N /= N = 0.

Under the alternative independence hypothesis, non-target responses occur fully
independently in each feature dimension: hence, ˛NT = ˛O

N˛C
T , ˛TN = ˛O

T ˛C
N, ˛N /= N =

((m − 1)/m)˛O
N˛C

N and ˛N=N = (1/m)˛O
N˛C

N (where m is the number of non-targets).

2.2.4. Hypothesis testing
Data from each individual subject was analysed separately, and then paired

sample t-tests used to make statistical comparisons at the group level. An arcsine
transformation was used for tests on proportional data, including mixture parame-
ters.

3. Results

3.1. Bias and precision

The recall task is illustrated in Fig. 1a. On each trial, a
subject was presented with an array of colored oriented bars
surrounding a central fixation point. After a blank retention
interval, one array location was indicated and the subject had
to reproduce from memory both the color and the orienta-
tion of the item previously displayed at that location (the
target item). For each feature dimension, the recall error was
defined as the deviation within the space of possible responses

(Fig. 1b) between the reported and actual feature value of the tar-
get.

The fidelity of reproduction in each feature dimension can be
characterized by two parameters, bias and precision. Bias indicates
a systematic tendency to deviate from the correct target value in the
same direction from trial to trial. No significant bias was observed in
color or orientation responses (t < 1.7, p > 0.10). Precision measures
the degree to which responses cluster around the correct feature
value: a precision of zero indicates that responses are randomly
distributed relative to the target. Consistent with previous studies,
the recall precision varied substantially with changes in memory
load (Fig. 1c).

When only one item was present in the memory array
(low-load), subjects recalled both color and orientation with consid-
erable precision (orientation, 2.9 ± 0.3 rad−1; color, 2.6 ± 0.2 rad−1;
mean ± S.E.; Fig. 1c), comparable with performance in a previ-
ous study in which recall of just one feature (color) was required
(3.4 rad−1; Bays et al., 2009). The precision of recall did not signifi-
cantly differ between feature dimensions (t = 1.4, p = 0.20).

When the number of items in the memory array was increased
(high-load, 6 items), recall precision decreased significantly in
both feature dimensions (orientation, 0.64 ± 0.08 rad−1; color,
0.70 ± 0.09 rad−1; t > 8.2, p < 0.001). Precision again did not differ
significantly between dimensions (t = 0.81, p = 0.44) and was simi-
lar to that previously observed for color recall with six item arrays
(0.51 rad−1 in Bays et al., 2009; but see also Fougnie, Asplund, &
Marois, 2010).

Subjects could choose to reproduce the orientation and color
of the target in any order, or adjust both simultaneously.
Whether a feature was adjusted first or second had no signifi-
cant effect on recall precision under either load condition (t < 0.32,
p > 0.75).
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3.2. Distribution of errors

Fig. 2a plots the distribution of responses relative to the tar-
get feature value for color (top) and orientation (right) on trials
with just one item in the memory array (low-load). In both fea-
ture dimensions, the distribution of errors was accurately described
by a (circular) gaussian centered on the target feature value (red
curves; �C = 0.30 ± 0.01; �O = 0.29 ± 0.03). The joint histogram of
errors in both dimensions is shown by the heat map in Fig. 2a.
The magnitudes of error in color and orientation on each trial were
uncorrelated (r2 < 0.01).

The distribution of errors in each feature dimension in the high-
load condition (6 items) is shown in Fig. 2b (top and right). As
observed in previous studies (Bays et al., 2009; Zhang & Luck, 2008),
the pattern of responses was not consistent with a solely gaussian
distribution of error in either feature dimension. Instead, the over-
all decline in precision (Fig. 1c) appeared to result from increases
in two sources of error.

First, unlike in the low-load condition, a significant proportion
of responses in the high-load condition (orientation, 29 ± 6%; color,
32 ± 5%) were statistically unrelated to the true feature value of
the target item (i.e. uniformly distributed). Second, the variability
of those responses that were centered on the target feature value
increased compared to the low-load condition (�C = 0.46 ± 0.03;
�O = 0.60 ± 0.04, t > 6.9, p < 0.001), indicating that each feature was
stored with increased noise. The mixture of gaussian and uniform
components that best fit the observed distribution of errors for each
feature dimension are shown by the red curves in Fig. 2b.

3.3. Uniformly distributed errors

The uniform response component has been interpreted as indi-
cating a proportion of trials on which the probed object is not stored
in memory. This hypothesis predicts that uniformly distributed
responses will be fully correlated across feature dimensions: a uni-
form color response will always coincide with a uniform orientation
response, and vice versa. Based on the model parameters obtained
from fitting orientation and color responses separately, we can pre-
dict the joint distribution of errors we would expect under this
hypothesis: the prediction is shown by the heat map in Fig. 2c (top).
The magnitudes of color and orientation errors are correlated in this
distribution, with r2 = 0.20.

We also considered an alternative hypothesis in which uniform
responses occur fully independently in the two feature dimensions:
the prediction of this model is shown in Fig. 2c (bottom). The inde-
pendence hypothesis predicts a concentration of responses along
horizontal and vertical axes of the joint distribution, correspond-
ing to trials on which the color response comes from the gaussian
distribution and the orientation response comes from the uniform
distribution, and vice versa. The magnitudes of color and orienta-
tion errors are uncorrelated under this hypothesis.

The joint histogram of observed errors in the high-load condi-
tion is shown in Fig. 2b (heat map). A concentration of responses
along the axes is clearly visible along vertical and horizontal axes, as
predicted under independence. Negligible correlation was observed
between error magnitudes in color and orientation (r2 = 0.02), also
consistent with the independence hypothesis.

To examine in more detail the frequencies of uniform and
target-centered responses, we fit a probabilistic model to subject’s
responses in which trials could fall into four categories: those on
which both color and orientation responses were centered on tar-
get values (TT), those on which both responses were unrelated to
the target and drawn from a uniform distribution (UU), those on
which the orientation response was centered on the target orien-
tation and the color response was from the uniform distribution
(TU), and vice versa (UT). The fitted parameter values are shown in

Fig. 2d, along with the predictions under correlated and independent
uniform responses.

Inconsistent with the correlation hypothesis, which predicts that
every trial will fall either into category TT or category UU, a highly
significant proportion of trials were described by categories UT
or TU (28 ± 3%; t = 14, p < 0.001). Overall, the observed parame-
ter values indicated strong independence of uniformly distributed
responses in color and orientation dimensions (˚2 = 0.11).

3.4. Misreporting errors

In a previous study (Bays et al., 2009) we proposed that a mix-
ture model comprising only target and uniform components may
be insufficient to fully describe the pattern of responses on repro-
duction tasks. We suggested that a third source of errors needed to
be considered: instances of mistakenly reporting a feature value
belonging to one of the other (non-target) items held in mem-
ory. Such ‘misreporting’ errors appear uniformly distributed when
responses are plotted relative to the target feature value (as in Fig. 2
and Zhang & Luck, 2008), and hence may be incorrectly attributed
to random guessing. However, these errors appear as a signifi-
cant concentration of the response distribution around zero when
responses are plotted relative to each of the feature values of the
non-target items in the memory array.

These non-target distributions are plotted in Fig. 3a, for color
(top) and orientation responses (right) in the high-load condition.
Whereas the ‘guessing’ interpretation predicts that these distribu-
tions should be uniform, responses in each dimension centered on
the feature values of the non-targets were significantly more fre-
quent than expected by chance (color: t = 7.7, p < 0.001; orientation:
t = 4.7, p = 0.001).

Following Bays et al. (2009), we fit a three-component model to
the data from each dimension, in which responses could come from
a distribution centered on the target, a uniform distribution, or a
distribution shared equally between each of the non-targets. The
resulting parameter estimates indicated that misreporting errors
formed a significant proportion of responses in each dimension
(color: 17 ± 4%; orientation: 16 ± 6%; t > 4.7, p = 0.001). As a result,
the proportion of responses attributed to the uniform component
was significantly reduced in comparison to the two-component
model (color: 15% versus 32%; orientation: 14% versus 29%; t > 2.3,
p < 0.05).

We considered two possible sources of misreporting errors.
One hypothesis was that they were caused by errors in storing
the locations of items in the memory array; the alternative was
that they were caused by misbinding of features during storage or
maintenance in memory. Again the critical test is the degree of
independence between responses on each trial.

The location-error hypothesis predicts that misreporting errors
will be correlated across feature dimensions: mistakenly report-
ing the color of a non-target will always coincide with mistakenly
reporting the orientation of the same non-target. In contrast, the
misbinding hypothesis predicts that misreporting errors will occur
independently in each feature dimension.

The joint distribution of responses relative to each non-target’s
feature values is shown by the heat map in Fig. 3a. The magni-
tude of deviation of responses from non-target feature values was
uncorrelated across feature dimensions (r2 < 0.01) consistent with
independence of non-target errors.

As before, we fit a probabilistic model to the joint response
data allowing for all possible combinations of target, non-target
and uniform responses. The critical parameters that distinguish the
two hypotheses are those involving combinations of target and
non-target responses, shown in Fig. 3b. These parameters indi-
cate the frequency of four categories of trial: those on which the
subject responds with the orientation of the target but the color
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Fig. 2. Distribution of errors relative to target feature values. (a) Frequency of response as a function of the deviation between reported and target feature values in the
low-load (1 object) condition: for color (top), orientation (right), and conjunction of both features (heat map). Colored lines indicate the response probabilities predicted by
a mixture model combining a gaussian distribution centered on the target value and a uniform distribution spread equally across the response space. (b) Error distributions
plotted as in (a) for the high-load (6 object) condition. (c) Predicted distributions of color and orientation responses under conditions of full correlation (top) and full
independence (bottom) between feature dimensions. Compare with the observed distribution of errors shown in (b). (d) Proportion of trials on which both responses are
centered on target values (TT); both are uniformly distributed (UU); the orientation response is centered on the target and the color response is uniform (TU); and vice versa
(UT). Estimates obtained by fitting a mixture model to observed responses are shown along with predictions under full correlation and full independence models.

of a non-target (TN), or vice versa (NT); trials where the subject
responds with both the color and the orientation of a single non-
target (N = N); and those where they respond with the color of one
non-target and the orientation of another (N /= N).

Fig. 3b shows the observed frequencies of responses in each
category. In addition, it displays the predicted frequencies under
correlated- and independent-misreporting hypotheses, based on
the model parameters obtained by fitting color and orientation
responses separately.

The correlated-misreporting hypothesis predicts that non-target
responses will occur only when the subject mistakenly responds
with both the color and orientation of a single non-target (N = N).
Inconsistent with this hypothesis, significant proportions of trials
corresponded to one target feature and one non-target feature (NT

or TN; 14 ± 3%; t = 10, p < 0.001), or responses to the color and orien-
tation of two different non-targets (N /= N; 3 ± 1%; t = 2.8, p = 0.02).
The independent-misreporting hypothesis, in contrast, predicts that
non-target responses will occur independently for color and ori-
entation dimensions. All non-target components estimated from
the data were consistent with this full-independence model (t < 1.8,
p > 0.11).

4. Discussion

The resolution with which visual features are stored in working
memory is highly dependent on total memory load, and begins to
decline as soon as the number of items in memory exceeds one
(Bays & Husain, 2008; Palmer, 1990; Wilken & Ma, 2004; Zhang &
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Fig. 3. Distribution of errors relative to non-target feature values. (a) Frequency of response as a function of the deviation between reported feature values and those of each
non-target (unprobed) item, in the high-load (6 object) condition, for color (top), orientation (right), and conjunction of both features (heat map). Note the strong central
tendency in each distribution, indicating that subjects frequently mistakenly report the features of non-target items. (b) Proportion of trials on which color and orientation
responses are both centered on the same non-target (N = N); each is centered on a different non-target (N /= N); the orientation response is centered on the target and
the color response on a non-target (TN); and vice versa (NT). Estimates obtained by fitting a mixture model to observed responses are shown along with predictions of
correlated-misreporting and independent-misreporting models.

Luck, 2008). However, it remains controversial whether this loss
of fidelity alone accounts for all errors in recall, or whether it co-
exists with a fixed upper limit on the number of objects that can be
simultaneously maintained (Alvarez & Cavanagh, 2004; Awh et al.,
2007; Bays et al., 2009; Bays & Husain, 2009; Cowan & Rouder,
2009; Zhang & Luck, 2008, 2009). Recent attempts to address this
question have examined recall of items varying in a single feature
dimension (typically color). Here, we presented arrays of objects
that varied in two dimensions, color and orientation: participants
were required to reproduce from memory both features of a single
object, indicated by location.

As in previous studies, the precision with which subjects were
able to reproduce each feature differed substantially between con-
ditions of low (1 item) and high (6 items) memory load. Despite
the substantial qualitative differences between feature dimensions,
precision (calculated with respect to the range of possible feature
values) was comparable for color and orientation responses. Preci-
sion values were also similar to those obtained in a previous study
employing a very different response methodology (a mouse click
on a wheel of color values in Bays et al., 2009, versus adjusting a
dial to cycle through possible feature values in the present study).
This provides an important validation of the precision measure as a
reproducible and general measurement of recall performance. Sig-
nificantly, the similarity of precision measures across dimensions
did not reflect a simple trade-off in performance between color
and orientation dimensions, as this would predict a negative cor-
relation in the magnitudes of error in each dimension which was
not observed.

While it is clear that increasing the number of items held in
memory makes recall of each one less precise, the mechanisms
underlying this increase in uncertainty are contentious. A critical
focus of debate is the manner in which errors are distributed within
the space of possible responses. In the current study, when only one
object was stored in memory, the distribution of responses relative
to the target feature value indicated that the stored representa-
tions of color and orientation were each independently corrupted
by gaussian noise. When the task required that a larger number of
objects be stored, the distribution of recall errors again indicated
the presence of gaussian noise, but with a substantial increase in
variability compared to the one-item condition. These results are
consistent with a shared-resource model of working memory in
which the variability of storage is determined by the fraction of

total memory resources available per item (Bays & Husain, 2008;
Wilken & Ma, 2004).

However, whereas performance in the low-load condition was
accurately captured by gaussian variability alone, this provided
only a partial description of the distribution of errors when mem-
ory load was increased. In this case, as in a previous analysis (Zhang
& Luck, 2008), a better fit was obtained by a mixture model that also
included a second, uniform distribution (spread equally across all
possible responses). The correct interpretation of this additional,
non-gaussian component is one of the key issues the present study
sought to address.

4.1. Independence of memory stores for different visual features

The presence of the uniform error component under conditions
of high memory load has been interpreted as supporting a “hybrid”
model of working memory, in which recall performance is lim-
ited both by a decline in resolution with increasing memory load,
and also by an upper limit on the number of objects that can be
stored (Zhang & Luck, 2008, 2009). According to this account, when
the number of items in the memory array exceeds the maximum
capacity, only a subset of objects is selected for storage. Hence, if
the probe corresponds to an object that was not selected, the sub-
ject will guess randomly in both feature dimensions. This model
predicts that the occurrence of uniform responses will be fully
correlated across feature dimensions: a uniform color response
will always coincide with a uniform orientation response, and vice
versa.

While estimates of the proposed (object) capacity limit vary,
they have typically fallen in the range two to four: a large-
scale study of 170 undergraduates using a change-detection task
obtained a mean capacity of 2.9 items (reported in Vogel & Awh,
2008), while the estimate obtained from Zhang and Luck’s (2008)
data was 2.3 items. In the present study we tested recall of 6 item
arrays, comfortably exceeding these proposed limits, and imply-
ing that at least some objects should not have gained access to
memory under the predictions of a hybrid model. Nonetheless,
absolute errors in color and orientation were strongly independent
(r2 = 0.02), and a detailed analysis of the joint response distribu-
tion revealed negligible correlation (˚2 = 0.11) between uniform
response components in recall of the color and orientation of the
probed object.
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These results are inconsistent with an upper limit on the num-
ber of integrated objects stored in working memory. The observed
independence in errors across feature dimensions instead implies
that the multiple visual features from different dimensions that
make up an object may be maintained separately, in independent
memory stores.

A similar conclusion was reached previously by Wheeler and
Treisman (2002), based on analysis of a variant of the change
detection task. These authors demonstrated that error rates were
determined by the total number of features that needed to be
remembered within each dimension (e.g. how many colors were in
a memory array) rather than the number of separate objects those
features were distributed between. While this outcome was con-
trary to a previous result obtained by Luck and Vogel (1997), it has
been replicated in several subsequent studies (Olson & Jiang, 2002;
Xu, 2002).

Instead of a single capacity-limited memory store maintaining
integrated object representations, Wheeler and Treisman proposed
parallel memory stores for each feature dimension, with inde-
pendent capacities. In this account, the information required to
combine the features into integrated objects (the ‘binding’ informa-
tion) is maintained separately and independently from the features
themselves. Such an account would also be consistent with a large
range of findings that demonstrate that sensory representations,
for example for different visual features, are associated with inde-
pendent working memory representations (Pasternak & Greenlee,
2005).

While the integrated-object hypothesis predicts that an object’s
features will always be remembered together, the independent-
stores account allows for the possibility that one feature of an
object could gain access to memory while another feature does
not. However, the strong independence of storage between feature
dimensions observed here is still unexpected. This is because the
independent-stores hypothesis also assumes a fixed upper limit
on memory capacity, although now reflecting a maximum num-
ber of features that can be stored per feature dimension rather than
a maximum number of bound object representations (Wheeler &
Treisman, 2002).

Assuming that selection of features for storage is governed by
the allocation of visual attention to an object or location (Desimone
& Duncan, 1995; Duncan, 1984; Posner & Cohen, 1984; Treisman
& Gelade, 1980), this model still makes the prediction that stor-
age of features belonging to the same object will be strongly
correlated. The absence of such a correlation in the present analy-
sis leads to one of two conclusions: either selection of a limited
number of features for storage occurred independently in each
feature dimension (inconsistent with most current models of atten-
tional selection), or all the features in each array were stored in
memory.

4.2. Misbinding of object features

In a previous study (Bays et al., 2009), we proposed an alter-
native explanation for the uniform component observed by Zhang
and Luck (2008) that does not require a limit on the number of
items stored. In these studies, subjects reported the color of one
item from an array, indicated by a location cue. While superficially
a simple test of memory for color, this task also requires memory
for location: to respond accurately, subjects must not only remem-
ber the colors in the array, but also which color appeared where.
Errors in recalling which color corresponds to the probed location
will result in subjects mistakenly reporting the color of one of the
other objects held in memory.

Consistent with this hypothesis, when we examined the distri-
bution of responses relative to these non-target colors, we found
that the responses captured by the uniform component in Zhang

and Luck’s (2008) analysis were not in fact distributed equally
across the response space, but instead predominantly clustered
around colors belonging to other objects in the memory array. This
was not apparent in previous analyses (Zhang & Luck, 2008, 2009)
because errors were only considered in relation to the color of the
probed item, and the other, non-target colors in the array were
randomly distributed relative to this target color (see also Bays,
2010).

The frequency of these ‘misreporting’ errors in the present study
was assessed by adding a third component to the mixture model, a
gaussian component distributed equally between non-target color
values. We confirmed that, as in the previous study (Bays et al.,
2009), a substantial proportion of responses that Zhang and Luck’s
model interpreted as random guesses were in fact instances of mis-
takenly reporting a feature value belonging to one of the other,
non-probed objects held in memory.

Previously, we proposed that misreporting responses might
be a consequence of variability either in memory for location or
misbinding of object features during maintenance or recall from
memory (Bays et al., 2009). Subjects were required to report the
color of an object matching a particular probed location in the
display: error in memory for locations could therefore result in
a subject mistakenly reporting the color of one of the other, non-
probed objects. Alternatively, both colors and locations in the array
may have been stored accurately, but the information indicat-
ing which color belonged with which location may have become
disrupted (Allen et al., 2006; Robertson, 2003; Treisman, 1998;
Treisman & Schmidt, 1982; Wheeler & Treisman, 2002; Wolfe &
Cave, 1999).

Because two feature dimensions other than location were
tested, these hypotheses can be discriminated in the present study.
The location-error hypothesis predicts that non-target responses
will occur simultaneously in both dimensions: the subject will mis-
take which object’s location corresponds to the probe, and report
both the color and orientation of an item at a different location in
the memory array.

In contrast, we predicted that misbinding would occur indepen-
dently for each feature, so one response might accurately reflect the
target feature value whereas the other corresponds to a non-target;
or color and orientation responses could correspond to the features
of two different non-targets. The present results indicate that non-
target responses occur independently in each feature dimension
(r2 < 0.01), consistent with the misbinding hypothesis.

While location errors are a predictable consequence of vari-
ability in storage of spatial information, it appears they did not
contribute significantly to responses in the current study. This could
be a consequence of the minimum separation maintained between
objects in each memory array (6◦ of visual angle), which may have
preserved accurate identification of the probed object even under
considerable variability in recall of its location.

The observation of misbinding errors in the present study is con-
sistent with previous results showing an increase in errors when
recall is tested for feature conjunctions (e.g. color-shape pairs) as
opposed to individual features (Brown & Brockmole, 2010; Fougnie
& Marois, 2009; Wheeler & Treisman, 2002). A corollary of indepen-
dent storage across feature dimensions is that a further mechanism
is required to maintain the binding information that groups fea-
tures into objects. A shared-resource account of working memory
implies that the fidelity with which this binding information is
maintained will decline monotonically with increasing memory
load, as occurs for individual feature values. Bays et al. (2009)
examined how the distribution of recall errors varied with both
the number of items held in memory and the presentation dura-
tion of the memory array. The frequency of misreporting responses
was not significantly affected by duration of presentation, but
increased rapidly with memory load. Interpreted in light of the
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present results, this confirms that misbinding occurs with increas-
ing frequency as total memory load increases.

A number of authors (Rensink, 2001; Wheeler & Treisman, 2002;
Wolfe, 1999) have proposed that encoding and maintenance of
binding information may be particularly dependent on the allo-
cation of visual attention. In the present study, the demands of
the task would have encouraged an equal distribution of attention
between all items in the memory array; however, we have previ-
ously shown that drawing visual attention to one array item with an
exogenous cue (a brief flash) results in an advantage for that item in
terms of recall precision (Bays & Husain, 2008). This implies a role
for attention in determining how limited memory resources are
distributed within a visual scene. If, as the present results suggest,
maintenance of binding information is similarly resource-limited,
we would expect attentional manipulations to have similar effects
on the frequency of misbinding.

4.3. Encoding limitations

While misreporting errors were not influenced by exposure
duration in Bays et al. (2009), the proportion of trials attributed
to the uniform response component dramatically declined as
presentation duration increased, suggesting that these responses
may reflect limitations on the speed with which visual information
can be encoded rather than memory capacity. A previous estimate
based on performance in a change detection task estimated the
rate of encoding into memory at 50 ms per item (Vogel, Woodman,
& Luck, 2006), or 300 ms for a 6 item array. However, detecting
changes in color of the magnitude used in that task would have
required only a coarse representation in memory. Our analysis
of error distributions in the color report task demonstrated that
encoding of a six item array was still in progress after 500 ms, and
a small uniform component was still present even after 2 s (Bays
et al., 2009).

Consistent with this latter result, in the present study a small
proportion of responses (<15%) was explained neither by gaussian
recall variability nor by misreporting of non-target features.
Critically, analysis of the joint distribution revealed that these
responses occurred separately in each feature dimension, with less
than 4% of trials corresponding to uniform responses for both color
and orientation (i.e. UU in the full model described in Table 2).
If the uniform response component is interpreted as reflecting
instances where no information is stored about the target feature
(as in Zhang & Luck, 2008), these results imply that at least one
feature was stored for 5.8 of the 6 memory array items, and 5.1 out
of 6 features were stored in each dimension. Accommodating these
results within a ‘slot’ or ‘hybrid’ model of working memory would
therefore require a substantial upward revision of the capacity
limit compared to typical estimates (<3 items, see Section 4.1),
in addition to whatever modification would allow independent
allocation of this capacity in different feature dimensions.

Alternatively, the small proportion of responses attributed to
the uniform component of the mixture model may reflect relatively
minor sources of error not captured by the other (gaussian and
misreporting) components of the model, e.g. incomplete encoding,
lapses of attention, biases towards average or canonical feature
values, or deviations from a strict gaussian distribution in recall
variability.

Incomplete encoding may be one reason why a previous
study investigating object integration came to different conclu-
sions about independence of feature dimensions (Gajewski &
Brockmole, 2006). These authors instructed subjects to explicitly
report which conjunction of color and shape they had observed at
a probed location, out of a canonical set of features. Trials on which
both responses were correct or both incorrect were more frequent
than expected under a simple assumption of uncorrelated error

across feature dimensions. However, unlike in the present study, it
is not possible using this partial-report methodology to distinguish
errors caused by noisy recall of a stored feature from those caused
by guessing or misbinding. Furthermore, the memory array was
presented very briefly (<200 ms) so these results may simply have
reflected a failure to encode all the objects in the time available.

An important question for shared-resource models of working
memory, not directly addressed by the present study, is to what
extent visual features from different dimensions tap into the same
memory resource. Previous studies based on change detection have
typically observed little or no performance cost when additional
features are added to a memory array if they belong to a differ-
ent feature dimension (Luck & Vogel, 1997; Olson & Jiang, 2002;
Vogel et al., 2001; Wheeler & Treisman, 2002), e.g. three colors and
three shapes can be remembered as accurately as three colors alone
(although there may be substantial errors in remembering which
color belongs with which shape). These results have led to the con-
clusion that different feature dimensions recruit different storage
capacities.

However, change detection performance may be relatively
insensitive to changes in recall precision (Bays & Husain, 2008;
Wilken & Ma, 2004). A recent study (Fougnie et al., 2010) has re-
examined this question using a mixture model approach, as in the
present study. These authors observed a significant, though mod-
est (mean ∼ 2◦), increase in the standard deviation of the gaussian
component of the model when a second set of features from a dif-
ferent dimension was added to the memory load. Additionally, a
small (mean ∼ 9%, equivalent to recall of 5.5 out of 6 items) uniform
component was observed when features were distributed between
different objects. These results suggest there may be some cost
associated with maintaining multiple feature dimensions, over-
looked by previous studies due to the use of change detection
methodology. However, the very small size of these effects, despite
doubling the total number of features in memory, does not appear
consistent with a model in which features from different dimen-
sions share a single resource.

4.4. Conclusions

The present results are difficult to reconcile with models of
working memory in which only a subset of information in each
array is selected for storage (Alvarez & Cavanagh, 2004; Awh et al.,
2007; Cowan, 2001; Luck & Vogel, 1997; Zhang & Luck, 2008). How-
ever, our findings can be straightforwardly accommodated within
resource-based accounts of visual working memory (Bays & Husain,
2008; Wilken & Ma, 2004).

Because a shared memory resource can be distributed equally
between all the items in an array, this model does not predict that
errors in different feature dimensions must be correlated. Instead,
as the total memory load increases, the fidelity of storage declines.
One consequence is that, as previously demonstrated, individual
visual features (e.g. color, orientation, location) are recalled with
increasing variability (Bays & Husain, 2008; Palmer, 1990; Wilken
& Ma, 2004; Zhang & Luck, 2008).

The present results suggest that the binding information that
groups features into objects also becomes degraded with increas-
ing memory load, resulting in a systematic increase in the frequency
with which independently stored features are incorrectly com-
bined.
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