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Reply to: “Model mimicry limits conclusions
about neural tuning and can mistakenly
imply unlikely priors”

Reuben Rideaux 1,2 , Paul M. Bays 3 & William J. Harrison4

REPLYING TO Michael J. Wolff et al. Nature Communications (2025)

A key goal of visual neuroscience is to understand how the physical
properties of the world are represented by the brain. Efficient coding
theory1,2 states that neural resources allocated to coding environ-
mental features should be proportional to the frequency with which
those features are found innature.We recently found3 ahorizontal bias
in the neural representation of visual orientation, as measured in
humans with electroencephalography (EEG). We then used generative
forward modelling4, a method of comparing empirical neuroimaging
recordings with matched simulated data produced by different
population codes, to adjudicate between previously proposed and
novel population codes of orientation in the visual cortex. Wolff and
Rademaker5 replicated our main findings in their own data as well as
in a re-analysis of our data: there is a horizontal bias in EEG mea-
surements of orientation. They argue, however, that generative for-
ward modelling has limited utility because it is susceptible to model
mimicry, i.e. many different population codes could be responsible
for the same pattern of EEG signals. Further, the authors propose an
alternative explanation for the horizontal bias observed in EEG,
involving an interaction between stimulus vignetting6 and a greater
spatial representation of the horizontal meridian relative to the
vertical meridian7–9. According to Wolff and Rademaker, this expla-
nation is more plausible because it assumes equal representation of
cardinal orientations and, in their view, there is little evidence sup-
porting a horizontal bias in prior literature. Here we respond to these
alternative explanations.

While we recognise that model mimicry presents a challenge in
any inverse problem, we argue, contrary toWolff and Rademaker, that
rational constraints based on established neurophysiology can miti-
gate this risk. We will first clarify and expand on existing evidence that
provides theoretical grounds for expecting a horizontal bias in neural
representation, then explain why stimulus vignetting is unable to
provide an alternative explanation for our results, and why Wolff and
Rademaker’s findings for peripheral stimuli fail to challenge them.
Finally, we highlight converging evidence for the horizontal bias
obtained across multiple neuroimaging methods.

Results and discussion
Theoretical grounds and empirical evidence for a
horizontal bias
There are two theoretical reasons to expect the existence of a hor-
izontal bias in the human visual system, based on existing evidence.
The first explanation was presented in our original study3: there are
more horizontal orientations in natural visual scenes10–13. This statis-
tical bias in natural visual environments is due in part to the prevalence
of the horizon14–17, and as such is not confined to evolutionary history,
although it is weaker in constructed environments. Our brains puta-
tively mirror this natural anisotropy in the tuning properties of neu-
rons in order to optimally process the environment1,2. The second
theoretical explanation, which was not mentioned in our original
study, relates to two well-known biases of the visual system: the radial
orientation bias18–21 (an overrepresentation of neurons tuned to
orientations that extend radially from fixation) and the horizontal
meridian bias7–9 (a cortical overrepresentation of the visual field along
the horizontal meridian). These biases were also discussed by Wolff
and Rademaker, but they seem to have overlooked their implications.
As shown in Fig. 1, the interaction between these two biases produces
an overrepresentation of horizontal orientation tuning in the visual
cortex. This potential interactionbetween radial and spatial biasesmay
reflect efficient coding of environmental statistics, but to the best of
our knowledge we are the first to propose this hypothesis. Regardless,
what is clear is that there are firm a priori grounds to expect a hor-
izontal orientation bias in the human visual system.

Wolff and Rademaker, in contrast, claim that there is little evi-
dence for a horizontal bias in the existing literature. As discussed
above, horizontal orientations are overrepresented in natural image
statistics, which, under the efficient coding hypothesis, should be
reflected in the encodingproperties of the visual system. Indeed, in the
psychophysics literature, this has been directly tested, and there has
been consistent support for a horizontal bias for over three
decades14,22–25. In our original article we highlighted evidence from
several neurophysiological studies that points to a horizontal bias in
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the brain, including studies of mouse26, cat27, and non-human
primate18. Other neurophysiological work also supports this bias27–30.
However, we agree that that there are other neurophysiological stu-
dies, including those identified byWolff and Rademaker, that have not
observed a horizontal bias. Indeed, this lack of consensus in the lit-
erature was part of the motivation for our original study, and we hope
it will inspiremoredirect examinationof this important issue in future.

Rational constraints mitigate the inverse problem
Wolff and Rademaker state that it is not possible to infer neural tuning
from EEG without making assumptions about neurophysiology. We
agree with this point. They also claim, however, that non-invasive
imaging methods cannot give evidence about underlying neural cau-
ses, and that incorporating established neurophysiology to constrain
models “is not an option” because it would be relying on reverse
inference. These claims are overstated at best: much of our under-
standing of the encoding properties of the human visual cortex has
been gained from indirect measures of latent neural processes (e.g.,
cross orientation suppression from fMRI measurements31). Indeed,
Wolff and Rademaker themselves suggest that EEG can reveal aniso-
tropic neural codes when they interpret results of their re-analysis as
showing evidence of the oblique effect.

Generative forward modelling, like other analytic methods
including computerized tomography (CT scans) and wavefield ima-
ging (e.g., sonar), attempts to solve an inverse problem. In this respect,
it is no different from other, more established, methods in that sen-
sible constraints are required to reduce the range of possibilities and
adjudicate between competing solutions. While in principle there are
an infinite set of population codes (i.e. neural tuning functions) that
could have produced the observed empirical results, in practice these
population codes vary in their relative feasibility, as determined by
physical laws (e.g., negative tuning functions aren’t possible) and
existing empirical evidence (e.g., sharper tuning for obliques than
cardinals directly contradicts neurophysiological evidence30). More-
over, we do not have to test all of them to decide between competing
hypotheses, e.g. we can make simplifying assumptions including
smoothly varying tuning preferences and widths, so long as smooth-
ness is not the factor of interest. While we cannot assert that only a
single population code produces the pattern of empirical results that
were observed, we can use generative forward modelling to identify a
tiny fraction of potential codes within the vast sea of possibilities, and
then apply rational constraints to identify the most likely model.

Wolff and Rademaker show that in addition to a model with ani-
sotropic tuning preferences, the empirical data can also be

recapitulated by population codes with anisotropic tuning widths and
gain (when the number of channels is also allowed to vary). The
population code with anisotropic tuning width contradicts neuro-
physiological evidence30 and thus seems less plausible than the alter-
natives. As Wolff and Rademaker demonstrate, tuning preference and
gain anisotropies produce highly correlated results.We agree with this
limitation of our conclusions: in our population models, having two
neurons tuned to the same feature produces the same population
response as having a single neuron with twice the gain. For parsimony,
in our study3 we limited the comparisons to those between tuning
preference and width. However, while there is considerable empirical
evidence of a cardinal/horizontal bias in the tuning preference of
orientation selective neurons18,26–30, their response gain appears to be
relatively isotropic30. It is notable that the population codes Wolff and
Rademaker present as mimicking our results all also replicate our
finding of an asymmetry between horizontal and vertical orientations,
demonstrating that even when a wider parameter space is explored,
some aspects of the code are necessary to explain the data.

Differences between foveal and peripheral vision
It is encouraging that Wolff and Rademaker replicated our findings in
their own foveal presentation data, and it is intriguing that they found
no evidence of a horizontal bias in the periphery. There are many
differences between the properties of the visual system that process
information centrally and in the periphery, from the distribution of
photoreceptors in the retina32 to the tuning properties of neurons in
primary visual cortex, e.g., spatiotemporal frequency33 and binocular
disparity34. Thus, given the known anisotropies that exist across the
visual field, it seems reasonable to expect that biases for centrally
presented features may be different than for those presented
peripherally.

The results from stimuli presented to the left and right of fixation
are particularly striking, given that the stimuli presented at these
locations have considerable spatial overlap (~20%) with those centred
onfixation. Indeed,whether because of its interactionwith a radial bias
or stimulus vignetting, the over representation of the horizontal
meridian shouldmanifest in better decoding of horizontal orientations
at the peripheral locations reported by Wolff and Rademaker. How-
ever, the discrepancy between the anisotropies observed at fixation
and peripherally could be a result of other differences in experimental
design. In particular, in Wolff and Rademaker’s experiment with per-
ipheral presentation, two stimuli with different orientations were
simultaneouslypresented to the left and right offixation. It is unknown
what effect presenting multiple concurrent stimuli might have on
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Fig. 1 | Interaction between radial orientation and spatial biases are sufficient
to produce a horizontal orientation bias. Illustration demonstrating how well-
established visual field biases could interact to produce a horizontal orientation
bias. From left to right, the radial bias18–21 (overrepresentation of radially aligned
orientations) and the spatial bias7–9 (overrepresentation of visual field along hor-
izontal meridian) combine to produce an overrepresentation of horizontal

orientation tuning preference in the visual cortex. That is, the spatial bias distorts
the radial bias by expanding and contracting the regions around the horizontal and
vertical meridians, respectively. The orientation anisotropy is evident in the radial
plot (combined biases) as an increased representation of horizontal (blue colour)
relative to the other orientations. Note, the yellow cross indicates the fovea.
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decoding of orientation from EEG recordings. We suggest that pre-
sence or absence of the horizontal bias in the periphery remains an
open question, awaiting results of purpose-designed experiments.

Stimulus vignetting unlikely to explain the horizontal bias
Wolff and Rademaker argue that the horizontal bias is due to an
interaction between relatively reduced EEG signal-to-noise along the
vertical midline, i.e., because of the aforementioned over-
representation of visual field along the horizontal meridian, and sti-
mulus vignetting6. The potential influence of stimulus vignetting has
been raised in the context of multi-voxel pattern analysis of fMRI
recordings, which is appropriate, as the spatial specificity of fMRI
renders it particularly susceptible to this confound. That is, because
activity produced by the stimulus and its border are represented
separately by different voxels, a decoder can learn to classify the sti-
mulus using information only from the border. By contrast, EEG
recordings have low spatial resolution, so the activity at each sensor
reflects the combined response to the stimulus and border. Thus, the
influence of the border cannot be selectively increased, i.e., activity
evoked by the border cannot be used selectively to decode orienta-
tion, but only as a component of the overall response to the stimulus.
We thereforeperformed an image analysis to quantify the contribution
of the border to the overall energy of a horizontally oriented target
grating. This analysis is similar to the stimulus modelling11,35 used by
Wolff and Rademaker. Our conservative estimate shows that stimulus
vignetting in our study produces a 3.9% increase in horizontal energy
(Fig. 2a); however, when different spatial filters are used, this effect is
either reduced or reversed such that vertical orientation energy
dominates (see Supplementary Fig. S1). Given the magnitude of the

observed horizontal bias (horizontal/vertical decoding accuracy: 141%)
is more than an order of magnitude larger than this, vignetting seems
to be an unlikely explanation.

The relative energy contribution of stimulus vignetting increases
with steeper border gradients36. Thus, if vignetting explains the hor-
izontal bias, the bias we reported in our original study3 should be
reduced or absent when a shallower border gradient is used. To test
this, we re-analysed a previously published dataset of magnetoence-
phalography (MEG) responses to centrally presented stimuli with
considerably shallower borders37 (+0.5% horizontal energy from vig-
netting) using standard forward encoding (not generative forward
modelling). In direct conflict with the vignetting account, we found a
larger horizontal bias (Fig. 2b).

These findings provide compelling evidence against the vignet-
ting explanation, but they also replicate the existence of the bias using
a different neuroimaging modality. While MEG and EEG signals origi-
nate from the same neurophysiological processes, the biophysical
properties of these signals are qualitatively different, e.g., one mea-
sures changes in electrical activity on the scalp while the other mea-
sures changes in the magnetic field. Indeed, in contrast to the results
from EEG, we found that the univariate MEG responses were highest
for obliques, and similar between horizontal and vertical orientations
(Fig. 2b); as previous reported38,39. Despite this, we found the same
pattern of decoding results, demonstrating a decoupling between the
representational fidelity and the magnitude of the evoked response.
These findings add to recent fMRI work40 that also show a strong
horizontal bias, demonstrating converging evidence for a horizontal
bias in human visual cortex across all major non-invasive neuroima-
ging modalities (EEG, MEG and fMRI).

Fig. 2 | Stimulus vignetting is an unlikely explanation for the horizontal bias.
a Estimating the contribution of vignetting to the overall stimulus signal. We ana-
lysed the stimulus used in Harrison et al.3 andMyers et al. 37 (stimulus shown in (b))
by convolving the stimuli with a bank of orientation and spatial frequency tuned
filters, and then computing the extent of stimulus spread either parallel versus
orthogonal to the stimulus orientation (see Supplementary Material for details
description of analysis). The resulting difference between horizontal and vertical

vignetting, as a percent of the total stimulus energy, was 3.9% and 0.5% for our
study and Myers et al., respectively. b From left to right: example stimuli, nor-
malized absolute univariate response and corresponding decoding accuracy, pre-
cision, andbias, as a functionof orientation, forHarrisonet al. EEGdataset (top row,
blue) and previously published Myers et al. MEG dataset (bottom row, orange).
Shaded regions in (b) indicate ±SEM. Source data are provided as a SourceData file.
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Concluding remarks
While vignetting was once thought to be a major confound for fMRI
decoding6, recent work by the same group showed that orientation-
specific BOLD activity does indeed reflect cortical tuning
properties41. Similarly, our re-analysis of previously published data
confirms that stimulus vignetting does not strongly influence orien-
tation decoded from EEG/MEG. Rather, as we originally inferred3, the
pattern of results we observed likely reflects a horizontal orientation
bias in the visual cortex, and prior theoretical and empirical support
for such a bias may have been overlooked. Further, in contrast to
Wolff and Rademaker, we believe rejecting analytic methods simply
because they attempt to solve an inverse problem is excessively
conservative. We have shown that, as with other suchmethods, when
rational constraints are applied, generative forward modelling can
produce valuable insights into the population codes underlying
neural responses.

Methods
Estimating the influence of stimulus vignetting
We analysed the potential contribution of vignetting to the overall
stimulus energy using a standard filtering analysis (e.g. ref. 35). An
overview of the filtering is shown in Fig. 2a. First, we filtered the
target stimulus with a bank of 16 orientation and spatial frequency
tuned quadrature pair filters. Orientations were linearly spaced
between 0° and 168.75°. Changing the number of filters does not
change the results. The spatial frequency was selected to match the
period of the stimulus: 13 cycles per image for Harrison et al.3 and 16
cycles per image for Myers et al.37. Changing the spatial frequency
tuning of the filter bank can invert the vignetting effect, a point to
which we will return below. Each filter was convolved with the sti-
mulus, and the resulting energies were summed across filter outputs.
Filtering was performed in the frequency domain in MATLAB. We
constructed two vignette masks: one that measures stimulus energy
in the spatial region that extends parallel to the stimulus orientation,
and one that measures stimulus energy in the spatial region that
extends orthogonal to the stimulus orientation. Parallel and ortho-
gonal vignette masks were raised cosine filters centred on 90° and
0°, respectively, with a bandwidth of 45°. Note that these filters are
constructed in the spatial domain so that we could quantify spatial
energy, unlike the oriented energy filters that were constructed in
the frequency domain. We then found the dot product of the total
stimulus energy and each vignette mask, thereby isolating energy
that extends parallel or orthogonal to the stimulus orientation.
Finally, the estimate of the contribution of vignetting to the total
stimulus energy as a percent was calculated as:

v=
ðεparallel � εorthogonalÞ

εtotal
× 100

where v is the contribution of vignetting in percent, ε is stimulus
energy from filters indicated by subscripts.

Weestimated that vignetting contributes 3.9% to theoverall signal
based on the stimulus used in Harrison et al.3. Whereas Harrison et al.3

used a sinewave grating with a bevelled edge, Myers et al.37 used a
Gabor stimulus (4° diameter, 2 cycles/° spatial frequency) with a con-
siderably smoother border profile (see Fig. 2b for a visual comparison).
As expected, the smoother border used by Myers et al.37 reduced its
contribution to 0.5%. Changing the filter spatial frequency by ±1 octave
changes the contribution of vignetting to the overall signal (see Sup-
plementary Fig. S1). For the targets used by Harrison et al. 3, higher
spatial frequency filters reduce the effect of vignetting, such that the
difference in energy extending parallel to the stimulus orientation
versus orthogonal to the stimulus contributes only 1% of the overall
signal. Moreover, lower spatial frequency filters reverse the effect of

vignetting, such that the energy extending orthogonal to the stimulus
orientation is greater than energy extending parallel, contributing
27.4% of the overall signal when the filter is half the frequency as the
target.

Re-analysis of MEG dataset
To test whether vignetting could be driving the horizontal bias
observed inHarrison et al.3, we re-analysed apreviouslypublishedMEG
dataset in which observers were presented with centrally positioned
Gabor stimuli of varying orientation37. The data were already pre-
processed, as described in Myers et al.37. Consistent with Harrison
et al.3, we epoched the data from −50 to 450ms around stimulus onset
and included only posterior sensors in the analysis (EEG: occipital and
parietal sensors; MEG: the 108 sensors between positions 1642 and
2543, according to the Elekta Neuromag electrodes scheme). For both
EEG and MEG datasets, we sorted presentations into 16 evenly spaced
orientations bins from 0° to 180° and calculated accuracy, precision,
and bias in each bin, averaged across the epoch (see Neural Decoding
section below for detailed description of analysis). In addition to these
decoding metrics, we calculated the absolute univariate response as a
function of orientation by averaging the absolute response (EEG: |µV|,
MEG: |fT|) across the epoch. There were large individual differences in
absolute univariate responses, so for the purpose of clarity, we nor-
malized each participant’s average absolute univariate responses by
subtracting the average.

Neural decoding
To characterise sensory representations of the stimuli, we used an
invertedmodelling approach to reconstruct stimulus orientation from
the M/EEG recordings31,42. A theoretical (forward) model was nomi-
nated that described themeasured activity in theM/EEG sensors given
the orientation of the stimulus. The forward model was then used to
obtain the inverse model that described the transformation from M/
EEG sensor activity to stimulus orientation. The forward and inverse
models were obtained using a ten-fold cross-validation approach in
which 90% of the data were used to obtain the inversemodel on which
the remaining 10% were decoded.

Similar to previous work43,44, the forward model comprised five
hypothetical channels, with evenly distributed idealized orientation
preferences between 0° and 180°. Each channel consisted of a half-
wave rectified sinusoid raised to the fifth power. The channels were
arranged such that a tuning curve of any orientation preference could
be expressed as a weighted sum of the five channels. The observed M/
EEG activity for each presentation could be described by the following
linear model:

B=WC+ E

whereB indicates the (m sensors × n presentations)M/EEGdata,W is a
weight matrix (m sensors × 5 channels) that describes the transfor-
mation from M/EEG activity to stimulus orientation, C denotes the
hypothesized channel activities (5 channels × n presentations), and E
indicates the residual errors.

To compute the inverse model, we estimated the weights that,
when applied to the data, would reconstruct the underlying channel
activities with the least error. In line with previous magnetencephalo-
graphy work45,46, when computing the inverse model, we deviated
from the forwardmodel proposed by Brouwer and Heeger43 by taking
the noise covariance into account to optimize it for M/EEG data, given
the high correlations between neighbouring sensors. We then esti-
mated the weights that, when applied to the data, would reconstruct
the underlying channel activities with the least error. Specifically, B
and C were demeaned such that their average over presentations
equalled zero for each sensor and channel, respectively. The inverse
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model was then estimated using either a subset selected through
cross-fold validation) or all the data in one condition. The hypothetical
responses of each of the five channels were calculated from the
training data, resulting in the response row vector ctrain, i of length
ntrain presentations for each channel i. The weights on the sensors wi

were then obtained through least squares estimation for each channel:

wi =Btrainc
T
train, i ctrain, i c

T
train, i

� ��1

whereBtrain indicates the (m sensors × ntrain presentations) trainingM/
EEG data. Subsequently, the optimal spatial filter vi to recover the
activity of the ith channel was obtained as follows46:

vi =
fP

i

�1
wi

wT
i
fP

i

�1
wi

where fP
i is the regularized covariance matrix for channel i. Incor-

porating the noise covariance in the filter estimation leads to the
suppression of noise that arises from correlations between sensors.
The noise covariance was estimated as follows:

dX
i
=

1
ntrain � 1

εiε
T
i

εi =Btrain �wictrain, i

where ntrain is the number of training presentations. For optimal noise
suppression, we improved this estimation by means of regularization
by shrinkage using the analytically determined optimal shrinkage
parameter46, yielding the regularized covariance matrix fP

i.
For each presentation, we decoded orientation by converting the

channel responses to polar form:

z = c � e2iφ

and calculating the estimated angle:

θ̂=
arg zð Þ

2

wherec is a vector of channel responses andφ is the vector of angles at
which the channels peak.

Stimulus orientation was sampled from continuous distributions,
but to reliably characterize these features across their dimension, we
grouped presentations into 16 evenly spaced bins from 0−180°. From
the decoded orientation, we computed three estimates: accuracy,
precision, and bias. Accuracy represented the similarity of the decoded
orientation to the presented orientation45, and was expressed by pro-
jecting the mean resultant (averaged across presentations within the
same stimulus orientation bin) of the difference between decoded and
stimulus orientation onto a vector with 0°:

r̂θ =Re �R
� �

, �R=
1
n

Xn

j = 1
exp i θ̂j � θ

� �� �

Precision was estimated by calculating the angular deviation47 of
the decoded orientation within each orientation bin:

σ̂θ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� j�Rj� �q

and normalized, such that values ranged from0 to 1, where 0 indicates
a uniform distribution of decoded orientation across all orientations
(i.e., chance-level decoding) and 1 represents perfect consensus

among decoded orientation:

p̂θ = 1�
2σ̂θffiffiffi
2

p

Bias was estimated by computing the circular mean of angular
difference between the decoded and presented orientation:

b̂θ = argð�RÞ

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The EEG and MEG data re-analysed in this paper can be accessed
at https://osf.io/5ba9y/ and https://doi.org/10.5061/dryad.m57sd,
respectively. Source data are provided with this paper.

Code availability
The codeused to perform themodelling canbeaccessed athttps://osf.
io/65dca/?view_only=88e12d759a67413ea4076a664a295798.
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