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Population coding models provide a quantitative account of visual working memory (VWM) retrieval
errors with a plausible link to the response characteristics of sensory neurons. Recent work has provided
an important new perspective linking population coding to variables of signal detection, including d-
prime, and put forward a new hypothesis: that the distribution of recall errors on, for example, a color
wheel, is a consequence of the psychological similarity between points in that stimulus space, such that
the exponential-like psychophysical distance scaling function can fulfil the role of population tuning and
obviate the need to fit a tuning width parameter to recall data. Using four different visual feature spaces,
we measured psychophysical similarity and memory errors in the same participants. Our results revealed
strong evidence for a common source of variability affecting similarity judgments and recall estimates
but did not support any consistent relationship between psychophysical similarity functions and VWM
errors. At the group level, the responsiveness functions obtained from the psychophysical similarity task
diverged strongly from those that provided the best fit to working memory errors. At the individual
level, we found convincing evidence against an association between observed and best-fitting similarity
functions. Finally, our results show that the newly proposed exponential-like responsiveness function
has in general no advantage over the canonical von Mises (circular normal) function assumed by previ-
ous population coding models.
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When asked to reproduce simple visual features from memory,
human observers give responses that deviate in a systematic man-
ner from correct values. Efforts to understand the nature of these
recall errors have led to the development of numerous quantitative
models of VWM recall aimed at accounting for the shape of em-
pirical error distributions, which have excess kurtosis compared
with a normal distribution, with more density in the tails, an effect
that becomes more prominent as the number of memoranda
increases. Despite a long-running dispute about how and why
these errors arise (Bays, 2014; Fougnie et al., 2012; Luck &

Vogel, 1997; van den Berg et al., 2012; Zhang & Luck, 2008),
recent attempts to unify existing models within the framework of
sampling have shown that dominant models of VWM share previ-
ously unrecognized commonalities (Schneegans et al., 2020).
Here, we provide evidence for a further correspondence between
influential models of VWM.

Computational theories of population coding (Pouget et al.,
2000, 2003) form the basis of one successful approach to
explaining the data and mechanisms of VWM recall. In the Neu-
ral Resource model (Bays, 2014, 2015; Bays & Taylor, 2018;
Schneegans & Bays, 2017), visual features are first encoded in
and subsequently reconstructed from the activity of a population
of idealized feature-selective neurons. In the simplest instantia-
tion of the model (depicted in Figure 1a–1d), all neurons are
assumed to have identical bell-shaped (von Mises) tuning curves
of width W, translated through the feature space to peak at each
neuron’s individual preferred feature value, such that they pro-
vide dense uniform coverage of the feature space (Figure 1a).
The joint response of the population to a particular stimulus can
be visualized as a hill of activity with the same width and shape
as the neural tuning curve, centered on the true stimulus feature
and scaled by a peak amplitude (rmax; Figure 1b). At read-out
this mean response is translated into discrete spike counts with
Poisson variability (Figure 1c), which are decoded according to
the principle of maximum likelihood to obtain a recall estimate.

The amplitude of activity controls the encoding precision, with
larger values of rmax giving rise to more reliable decoded estimates.
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The width of the tuning curve is reflected in the distribution of recon-
structed values, with narrower tuning producing stronger deviations
from a normal distribution of error, including longer tails at low activ-
ity levels. A further assumption of the model is that the population ac-
tivity encoding all stimuli is normalized, meaning that the total activity

level is fixed and shared between memory items, implementing a form
of flexible memory resource (Carandini & Heeger, 2011). The predic-
tions of this model have proved a close fit to empirical human recall
errors in analogue report tasks, and in particular quantitatively repro-
duce effects of set size and predictive cues on those errors.

Figure 1
Comparison of the Neural Resource Model and the Target Confusability Competition
(TCC) Model
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Note. (a) In the Neural Resource model, stimuli are encoded in an idealized homogeneous popu-
lation of spiking neurons whose activation depends on their individual tuning preferences and
common tuning width (W). Asterisk indicates the preferred value of the neuron with the high-
lighted tuning function. (b) Activation as a function of preferred value, responding to a stimulus
value of zero. The amplitude of the stimulus-evoked response is determined by the peak firing
rate (rmax). (c) Spikes are generated according to a Poisson process. (d) Recall estimates are
obtained by a maximum likelihood decoder. The resulting distributions of error display long tails,
consistent with patterns of human recall error. (e) In the TCC model, the psychological similarity
between possible stimuli plays a critical role. (f) Recall of an item produces a pattern of familiar-
ity signals that peaks over the encoded stimulus with strength d0 and spreads throughout the fea-
ture space in proportion to each values’ psychological similarity to the encoded stimulus. (g) The
pattern of familiarity signals is corrupted by Gaussian noise. (h) The feature value with the strong-
est signal is reported. Like the population coding account, this model predicts long-tailed distribu-
tions of error. See the online article for the color version of this figure.
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A superficially quite different account of recall was recently pro-
posed by Schurgin et al. (2020), who argued that the shape of the
WM error distribution can be explained by the psychological scal-
ing of distances in the feature space. According to the Target Con-
fusability Competition (TCC) model (depicted in Figure 1e–1h),
the probability of confusing features in memory is determined by a
function which maps distances between features on the physical
scale to their perceived similarity (Figure 1e). This function can be
measured in a perceptual task in which observers make judgments
about the relative similarity of pairs of stimuli (e.g., the method of
quadruples; Maloney & Yang, 2003). As demonstrated by a large
literature on similarity and generalization, these functions are
approximately exponential with respect to physical distance
(Nosofsky, 1992; Shepard, 1987).
In the TCC framework, recalling an item produces an internal

response or familiarity signal with a peak amplitude (d0) at the true
feature value, and a spread to neighboring feature values that is
proportional to the psychological similarity function (Figure 1f).
This mean response is corrupted by noise drawn from a standard
normal distribution (Figure 1g), and a recall estimate is obtained
by applying a Max rule to the familiarity pattern (i.e., choosing the
feature value with the strongest familiarity signal; Figure 1h). Suc-
cessful fits of this model have been demonstrated to error distribu-
tions in analogue report tasks and also 2-AFC memory tasks.
Although described at different levels of analysis and using dif-

ferent concepts, there is a close correspondence between Neural
Resource and TCC models. In both cases, the internal response to
an encoded stimulus is a symmetrical function over possible fea-
ture values that peaks at the true stimulus value and decays with
distance in stimulus space (Figure 1b and 1f). And in both cases, a
recall estimate is recovered from a noise-corrupted version of this
ideal response function (Figure 1c and 1g), such that recall preci-
sion is governed by the amplitude of the internal response (set by
parameters rmax and d0, respectively).
This leaves the choice of responsiveness function as the sub-

stantive difference between accounts of WM, with TCC using a
psychophysical similarity function, independently estimated in a
perceptual task, in place of the Neural Resource model’s canonical
von Mises function varying only in width. The seeming success of
both models in replicating human memory errors raises the possi-
bility of linking psychological similarity to principles of neural
coding. However, the source study did not systematically examine
whether variations in psychophysical similarity functions, either
across individuals or feature spaces, corresponded to observed dif-
ferences in the shape of WM error distributions. The goal of the
present study was to investigate and formally test the hypothesized
relationship between judgments of perceptual similarity and work-
ing memory recall errors in a large group of participants and a
range of visual feature spaces.

Method

Participants

A total of 396 naive observers (205 females, 169 males; aged
18–35) took part in the study after giving informed consent in
accordance with the Declaration of Helsinki. All observers
were recruited using Prolific (https://www.prolific.co), reported

normal color vision and normal or corrected-to-normal visual
acuity, and were remunerated £5 per hour for their participa-
tion. Fifty-six observers initially recruited to the study were
subsequently excluded and replaced with new participants for
one of the following reasons: performance at chance levels
(47), completing the task too fast (four), or technical errors
(five). In total, 90 observers participated in the color study, 100
in the orientation study, 104 in the angular location study, and
102 in the shape study.

General Method

Observers participated in three tasks: a working memory ana-
logue report task, a perceptual analogue report task, and a psycho-
physical scaling quad task. All observers completed tasks in the
same order and on separate days. All observers completed the
quad and WM task, and of the total sample, 323 observers com-
pleted the perceptual analogue report task. The tasks were pre-
sented via browsers on observers’ personal computers and were
coded in JavaScript and HTML Canvas.

Stimuli

Four classes of stimuli were tested in separate studies: colors,
orientations, angular locations, and artificial shapes, all drawn
from respective continuous circular feature spaces (see Figure
2). In all tasks, stimuli were presented against a mid-grey
background.

Color

The color stimuli were samples drawn from a color wheel,
defined as a circle in CIELAB space with constant luminance
(L* = 50), centered at a* = b* = 20, with radius = 60 units and
converted to RGB for presentation. In all tasks, color stimuli were
presented as colored disks with a radius of 50 pixels.

Orientation

Orientation stimuli were randomly oriented black bars (100 3
15 pixels) selected from the unique orientation space (08, 1808).

Angular Location

In the angular location study, stimuli were disks positioned on a
visible circle. In the working memory task, disks were colored by
randomly sampling without replacement from nine salient colors
(red, light blue, dark blue, cyan, green, dark green, purple, pink,
orange). When more than one location stimulus was presented,
locations were chosen at random with a minimum separation
between disks of 58 of angular distance. In the perceptual analogue
report task all disks were black. In the quad task, stimuli were
white disks (radius 3 pixels), presented in pairs on separate black
rings (radius 100 pixels).

Shape

The shape stimuli were 360 unique shapes forming a circular
space whose perceptual uniformity has been empirically validated
(Li et al., 2020). Shape stimuli across all tasks were 130 3 130
pixels in size.

SIMILARITY JUDGMENTS AND ERRORS IN WORKING MEMORY 3
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Working Memory Analogue Report Task

Each trial started with the presentation of a central annulus (ra-
dius 5 pixels), (Figure 2a–2d). After 750 ms a memory sample
array consisting of three or six stimuli was presented for 500 ms
(1,000 ms for shape owing to greater stimulus complexity). This
was followed by a delay period lasting 1,000 ms and a probe dis-
play indicating one of the stimuli to be reproduced from memory.
In the color, orientation, and shape tasks (Figure 2a, 2b, and 2d),

each stimulus was presented at one of six equidistant locations on
an imaginary circle (radius 250 pixels). The probe display consisted
of placeholder annuli at each of the previously occupied locations,
all light grey except for a single black placeholder indicating to
observers that they should report the feature of the item previously
at that location. Once a mouse movement was registered, a central
stimulus appeared which observers could adjust by moving the cur-
sor. For orientation stimuli, the central stimulus rotated with move-
ments of the cursor. For color and shape stimuli, observers moved
their cursor over a response wheel surrounding the probe display
(Figure 2a and 2d). Response wheels were rotated randomly from

trial to trial. In the angular location task (Figure 2c) stimuli (radius
10 pixels) were presented on a visible circle (radius 250 pixels),
and the probe display consisted of a centrally presented disk in the
same color as one of those previously shown, indicating which
item’s location should be reported. Once a mouse movement was
registered, a black ring (radius 250 pixels) and a black disk (radius
10 pixels) randomly positioned on that ring were displayed; the
location of the disk could be adjusted using the mouse. For all stim-
ulus features, observers registered their response with a mouse
click. Each observer completed 15 practice trials followed by 100
trials which were submitted to analysis.

Perceptual Analogue Report Task

On each trial, a single stimulus was presented and remained visible
while observers adjusted a central stimulus to match it. For the color,
orientation, and shape reproduction task, the presentation and
response phases were otherwise identical to the working memory
task. In the location reproduction task, a single black disk (radius 10

Figure 2
Procedure of Experiments
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Note. (a–d) Working memory analogue report task. On each trial, three or six objects were briefly presented and observers were required to memorize
relevant feature. After a brief delay, one item was indicated with a recall cue and observers were asked to reproduce the memorized feature value on a
continuous scale. (e–h) Psychophysical scaling quad task. Observers were asked to judge which of the two presented pairs (top or bottom) consisted of
less similar stimuli. (a & e) Color. (b & f) Orientation. (c & g) Angular location. (d & h) Shape. Stimuli not drawn to scale. See the online article for
the color version of this figure.
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pixels) was shown on every trial on a black annulus (radius 250 pix-
els) positioned at the center of the screen. Once a mouse movement
was registered, another randomly smaller (radius 210 pixels) or larger
(radius 290 pixels) black annulus was centered on the same location
along with a black disk whose location observers could adjust using
the mouse. For all features, observers completed 10 practice trials fol-
lowed by 50 trials which were submitted to analysis.

Psychophysical Scaling Quad Task

To establish the relationship between the physical and perceived
distances in a stimulus dimension we used a psychophysical scaling
“quad” task (Figure 2e–2h). On each trial, observers saw two pairs of
stimuli, located above and below a central horizontal line, and were
asked to judge which pair consisted of stimuli that were less similar.
For all stimulus features, the entire feature space was discretized

in steps of 5° (2.5° for orientation), for a total of 72 unique stimuli.
On every trial, four circular angles and associated feature values
were sampled pseudorandomly from this discretized space. The
first two stimuli, h1 and h2, were sampled randomly without
replacement and with the constraint that the signed circular dis-
tance between them was smaller or equal to 1808 (908 for orienta-
tion). The remaining two stimuli, h3 and h4, were sampled with the
same constraint from the remainder of the circular space to avoid
overlapping intervals. On each trial, coin-toss randomization was
performed to determine the placement of the first pair (above or
below the vertical center of the screen).
In the color, orientation, and shape tasks (Figure 2e, 2f, and 2h) the

four stimuli on each trial were centered on one of four corners of an
imaginary rectangle positioned at the center of the screen (side 160
pixels). In the angular location task (Figure 2g) the stimuli were pre-
sented in pairs on two black rings centered in the upper and lower part
of the screen (vertical offset 120 pixels). Observers responded by
pressing the up or down arrow key to report that stimuli in the top or
bottom pair were less similar, respectively. The trials were not
speeded, and the stimuli remained visible until observers chose an
option. Observers completed 210 trials for color, 230 trials for orienta-
tion, and 240 trials for location and shape features. The number of tri-
als was chosen based on pilot data to produce an average testing block
duration of approximately 15 minutes. Before analyzing the data, we
excluded nine practice trials and all trials on which the response time
was faster than 200 ms (less than 0.1% of trials for all features).

Analysis

For ease of comparison, all stimulus values were analyzed and are
reported with respect to the circular parameter space of possible val-
ues, [–p, p) radians. To quantify the degree of evidence supporting an
effect, we used Bayesian hypothesis tests, implemented in JASP
(JASP Team, 2020) with the default Jeffreys-Zellner-Siow prior on
effect sizes (Liang et al., 2008). The Bayes factor compares the rela-
tive predictive adequacy of two competing hypotheses (e.g., alterna-
tive and null) and quantifies the change in belief that the data bring
about for the hypotheses under consideration (Wagenmakers et al.,
2018). Values of BF10 . 1 indicate evidence for an effect and values
BF10 , 1 indicate evidence for the absence of an effect. Results of
Bayesian ANOVA are reported as overall evidence for an effect,
BFincl, which quantifies how much more likely is the data under mod-
els that include the effect of interest compared with models that do

not include the same effect (Hinne et al., 2020). We interpret the val-
ues of Bayes factors according to a classification scheme as in Lee
and Wagenmakers (2013): BF = 1 as no evidence; 1, BF, 3 as an-
ecdotal evidence; 3 # BF , 10 as moderate evidence; 10 # BF ,
30 as strong evidence; 30# BF, 100 as very strong evidence; BF$

100 as extreme evidence. Unless specified otherwise, correlations
were calculated after removing outlying data points iteratively until
all data fell within63 SD of the mean (average of 1.7% of excluded
data per measure, range 0.5% to 3.8%). When a correlation is
reported for data pooled across different features, the data for each
stimulus feature was first standardized and outliers removed before
pooling the data and calculating the effect of interest.

Psychophysical Similarity Function

We applied a similarity-scaling technique to data collected on
the quad task. We followed Schurgin et al. (2020) by adapting the
Maximum Likelihood Difference Scaling (MLDS) method pro-
posed by Maloney and Yang (2003). Given a set of physical dis-
tances fw1;w2; . . . ;wkg in the feature space, the goal of the
MLDS method is to find a set of psychophysical distance values
fW1;W2; . . . ;Wkg that best predict an observer’s judgments about
stimulus similarity.

On every trial we presented two pairs of stimuli with physical fea-
ture values of ha, hb, hc and hd, giving respective physical distances
wab ¼ j ha � hb j and wcd ¼ j hc � hd j , where § is a subtraction
on a circle. We asked observers to judge which pair consisted of
stimuli that were less similar to each other. If we denote the per-
ceived difference within each pair asWab andWcd, and assuming the
difference estimates are corrupted by normally distributed additive
noise, observers should judge the pair ab as having the larger differ-
ence whenWab > Wcd þ e, where e � N(0, r2).

The only constraint in the above description is that
fW1;W2; . . . ;Wkg change monotonically; however, empirical
studies have found that perceived similarity is approximately ex-
ponential with distance in feature space across a wide range of
sensory modalities and stimulus features (Schurgin et al., 2020;
Sims, 2018). Here, we leveraged that knowledge and constrained
fW1;W2; . . . ;Wkg to decay exponentially with distance. The simi-
larity function x replaces a set of psychophysical distances
fW1;W2; . . . ;Wkg and is defined as:

xðwÞ ¼ e�sw (1)

This parametric description reduces the number of free parame-
ters to two: s which corresponds to the decay rate of the distance
function and the SD parameter r which reflects the stochasticity in
the decision model.

Empirical similarity functions display a small but systematic devi-
ation from exponential which is thought to be due to variability in
perception of the individual stimuli, rather than distances between
stimuli (Nosofsky, 1992; Schurgin et al., 2020). To account for this,
we convolved the exponential similarity function with perceptual
noise estimated from the perceptual analogue report task:

X ¼ x ~ WN (2)

where X is the final form of the similarity function, and WN is a
wrapped normal distribution with mean of zero and standard
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deviation matched to errors observed in the perceptual analogue
report task. Schurgin et al. (2020) found this parametric description
provided an excellent fit to similarity judgment data. Finally, the
similarity function was normalized to the range [0, 1]. The similarity
function X was fit to each observer’s data and the best fitting param-
eters s and r were found using maximum likelihood estimation.

Perceptual Analogue Report

Errors in the perceptual analogue report task were used to derive
estimates of perceptual noise. Data were pooled across observers
and errors that were .3 SD away from the mean were excluded.
The SD of the best fitting zero-mean wrapped normal distribution
was found via maximum likelihood search.

Working Memory

We fit three models to recall errors from the WM analogue
report task: the Neural Resource model (Figure 1a–1d), the empiri-
cal TCC model using the similarity function estimated via the
parametric MLDS method (Figure 1f–1h), and a synthetic TCC
model in which the similarity function was fitted to the WM data.
Neural Resource Model. We fit the Neural Resource model

of Bays (2014) to each observer’s responses on the working mem-
ory task (Figure 1a–1d). In this model of WM based on population
coding, memory stimuli are encoded in the noisy firing activity of
feature-selective neurons, and recall estimates are obtained by
optimal decoding of the population activity over a fixed time win-
dow. The idealized neurons have homogeneous von Mises tuning
functions that evenly tile a circular feature space. In a population
of M neurons, the average response of the ith neuron with pre-
ferred value ui in response to a stimulus value h is given by

riðhÞ ¼ c
MN

1
I0ðjÞ exp j cosðh � uiÞð Þ (3)

where c is the total population activity, N is the number of memo-
rized items, j is the von Mises tuning width, and I0(·) is the modified
Bessel function of the first kind with order zero. Equation 3 imple-
ments a simple form of divisive normalization (Carandini & Heeger,
2011) whereby the total spiking activity is divided between the items
in memory. The probability of the ith neuron producing ni spikes in
the interval T is modeled as a homogeneous Poisson process:

Pr½ni j h� ¼ ðriðhÞTÞni
ni!

expð�riðhÞTÞ (4)

The reported value for the cued item is obtained by maximum
likelihood decoding of the population spiking activity, n:

bh ¼ argmax
h

Pr½n j h� (5)

The parameterization in terms of c and j fully specifies the popu-
lation response to a stimulus and hence the distribution of recall
errors predicted under the model. However, with this parameteriza-
tion, the responsiveness function’s height and width are not inde-
pendently specified, as the j parameter affects both features of the
function. To facilitate comparison with the TCC model, we repara-
metrized the model (as previously described by Bays & Taylor,

2018) in terms of the peak firing rate (rmax) and the full-width at half-
maximum of the tuning function (W). Note that this reparameteriza-
tion does not affect the predictions of the model or the quality of fits.

We calculate rmax by noting that the neuron’s maximum firing
rate is achieved for a stimulus that matches the neuron’s preferred
value, i.e., when h = /i, which leads to:

rmax ¼ c
1

I0ðjÞ expðjcosð0ÞÞ ¼
cej

I0ðjÞ (6)

Similarly, half-maximum points lie symmetrically on either side
of /i, andW corresponds to the distance between these points:

W ¼ 2cos�1 1þ logð0:5Þ
j

� �
(7)

The peak activity parameter rmax determines each neuron’s
response to a visual stimulus matching its preferred value. As rmax
increases, more spikes are available for the decoding of feature value,
resulting in smaller deviations between the true and reconstructed
feature value. TheW parameter controls the range over which feature
values deviating from the preferred value elicit a response. This pri-
marily affects the shape of the resulting error distributions.

Maximum likelihood fits were obtained via the Nelder-Mead
simplex method (function fminsearch in Matlab). A MATLAB
toolbox implementing the neural population model is available to
download from https://bayslab.com/toolbox.

The Target Confusability Competition Model.
Empirical-TCC. In the TCC model of WM proposed by

Schurgin et al. (2020), the distribution of recall errors depends on
a perceptual similarity function X, which is a nonlinearly decreas-
ing function of distance in the stimulus space (Figure 1e–1h). On
recall of a stimulus with true feature value h, a noisy memory-
match signal is generated for each of a set of possible feature val-
ues h0, as a draw from a unit-variance Gaussian distribution:

dh0 � Nðdh0 ; 1Þ (8)

The mean dh0 of the memory-match signal distribution is deter-
mined by the psychological similarity of each feature value h0 to
the true stimulus value h, through a function X:

dh0 ¼ d0Xðh0Þ (9)

where d0 is a free parameter. The reported feature value is the one
with the strongest memory-match signal (a “winner-takes-all” de-
cision rule):

bh ¼ argmax
h0

dh0 (10)

We followed Schurgin et al. (2020) by assessing dh0 at 360
equally spaced points in the stimulus space, and adding a fixed
normally distributed error to recall estimates (SD = 2°) intended to
represent motor error. We used a grid search to obtain maximum
likelihood model fits. The d0 parameter was evaluated on a dense
grid ranging from 0 to 5.5 in increments of .02.
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Synthetic-TCC. In the original version of TCC, the respon-
siveness function X is estimated from a separate psychophysical
distance task such as a quad task, under the assumption that the
pattern of WM errors derives from the psychological similarity
between features. To test this assumption, we compared respon-
siveness functions obtained in this way to synthetic responsiveness
functions chosen to best fit the working memory data. Mirroring
the parametric MLDS method described in the main article, we
modeled the synthetic responsiveness function as an exponential
convolved with perceptual noise estimated from the perceptual
analogue report task, with the exponent as a free parameter. Along
with the d0 parameter, this made the extended TCC model a two-
parameter model. When fitting across set sizes, we fit separate d0

parameters but searched for a single best fitting exponent across
both set sizes, making three free parameters in total. To find the
best-fitting synthetic function, we used a bank of exponential func-
tions with the exponents ranging from .001 to 10 in steps of .0313.
Von Mises-TCC. In addition, we fit a version of the Syn-

thetic-TCC model with a von Mises responsiveness function
instead of the exponential-like function. We again searched for the
best fitting responsiveness function across two set sizes, on a grid
of circular standard deviation from .03 to 2 in steps of .0062.
Relating the Models. Here we briefly clarify the mathemati-

cal correspondence between TCC and Neural Resource models
(previously presented in a preliminary form in Bays, 2019). We
start by simplifying the equation for mean firing rate in the Neural
Resource model (Equation 3):

riðhÞ ¼ n f ðh � uiÞ (11)

where n ¼ c
MN is the response amplitude and f(·) is the von Mises

function. We then rewrite the TCC Equation 9 as:

dh0 ¼ d 0gðh � h0Þ (12)

where g(·) is a nonlinearly decreasing similarity function. It
becomes clear that the mean spiking response riðhÞ in Equation 11
corresponds to the mean memory-match signal dh0 in Equation 12,
with n and d0 scaling the activation of the respective responsive-
ness function.
In TCC, the response to a stimulus h is drawn from a unit-variance

Gaussian distribution (Equation 8). Using a Gaussian approximation
to Poisson for the Neural Resource model (as in e.g., Schneegans &
Bays, 2017), neural responses can be modeled as:

ri � NðriðhÞ; nÞ (13)

In the Gaussian case the neural signal can be scaled arbitrarily with-
out changing predictions of the model as long as the ratio of signal to
noise remains unchanged. Scaling the response function by a factor 1ffiffi

n
p

results in a unit-variance Gaussian riðhÞ � Nð ffiffiffi
n

p
f ð h � uiÞ; 1Þ.

Finally, setting d0 ¼ ffiffiffi
n

p
makes the distributions of signal strengths in

the two models identical. Critically, this correspondence reveals that
the main difference between the two models lies in the choice of the
responsiveness functions f(·) and g(·), which is the topic of the main
article.
The TCC model does not specify how d0 varies with set size; how-

ever, the relationship identified here between the signal detection

variable d0 and response amplitude n in the Neural Resource model
leads to the prediction that d0 is proportional to 1ffiffiffi

N
p , which we note is

also consistent with predictions of the sample-size model of Shaw
(1980), indicative of the deep theoretical connections between these
models (Schneegans et al., 2020; Smith, 2015).

Correction for Attenuation. To assess the correspondence
between the empirical similarity functions used by TCC and the
best-fitting exponential activation functions found in the synthetic-
TCC model, we calculated the Pearson correlation coefficient
between the exponents of two functions. Because the magnitude of
this correlation can be reduced owing to measurement error of one
or both measures, we applied a correction for attenuation using
Spearman’s (1904) formula:

r0xy ¼
rxyffiffiffiffiffiffiffiffiffiffiffi
rxxryy

p (14)

where rxy is the observed correlation calculated from the raw data,
and rxx and ryy are the reliabilities of measurements x and y,
respectively. Estimates obtained by applying this correction are
necessarily larger than the uncorrected correlation.

We estimated the reliabilities of both measures using a bootstrap
method. In particular, for each observer we generated pairs of em-
pirical exponents and pairs of synthetic exponents by resampling
with replacement the trial-by-trial data from the quad and WM
tasks, respectively. We repeated this procedure to generate 100 of
these simulated samples per observer. As in our main correlational
analysis, observations that were 63 SD away from the sample’s
mean were excluded. The reliability was estimated as the mean
correlation across all simulated samples. This method was
repeated for each feature separately.

Results

We measured participants’ ability to reproduce visual stimuli
from perception and working memory in four different feature
dimensions using standard analogue report designs. In the same
participants, we assessed psychological similarity functions for
each feature dimension using the method of quadruples, in which
observers were required to compare two pairs of stimuli and
decide which pair consisted of less similar stimuli.

Psychophysical Similarity Functions

We used a parametric version of the MLDS method (Maloney &
Yang, 2003) to fit empirical similarity judgments, obtaining two max-
imum likelihood parameters for each participant: an exponent s that
describes how quickly similarity decays with distance in the feature
space, and a standard deviation r which reflects variability in the dis-
tance comparisons but does not contribute to the distance function
itself. To account for effects of perceptual noise on individual stimuli,
the exponential function was convolved with a wrapped normal distri-
bution matched in SD to the corresponding perceptual reproduction
task (0.103, 0.147, 0.022, 0.137 for color, orientation, location, and
shape, respectively) and then scaled to the range [0, 1]. The estimated
similarity functions, shown in Figure 3a, are consistent in shape with
functions previously reported using nonparametric methods (Nosof-
sky, 1992; Schurgin et al., 2020).
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Bayesian ANOVA applied to the fitted exponent parameters
(Figure 3b) found extreme evidence for a difference in the curva-
ture of the similarity functions across features (BFInclusion = 1415).
Comparing each pair of features, we found color displayed the
largest nonlinearity (all BF10 $ 4.7). The remaining three features
displayed similar nonlinearities, as indicated by weak evidence for
a difference in curvature (location vs. orientation: BF10 = 1.2), or
moderate evidence against a difference in curvature (shape vs.
location and orientation: all BF10 # 0.29). For the noise parameter
(Figure 3c), there was extreme evidence for differences between
feature dimensions (BFInclusion = 1), with location displaying the
lowest noise estimates (all BF10 $ 7.4 3 1012). Shape was found
to have lower noise estimates than color and orientation (all BF10 $
3.8), while color and orientation displayed comparable levels of
noise (BF10 = 0.16).

Working Memory Performance

Data points in Figure 4a show error distributions from the work-
ing memory analogue report task for each of the four feature
dimensions. As typically observed, increasing the number of mem-
ory items increased recall variability for all features, seen here as a
greater dispersion of errors for set size 6 (gray dots) compared with
set size 3 (black dots). We also observed qualitative differences in
recall variability between the different feature dimensions. In line
with previous studies, the Neural Resource model (see Figure 1)
provided a very good description of empirical error distributions in
each feature dimension, capturing the effects of set size and the lep-
tokurtosis (“long tails”) of error distributions. The mean predictions
of the model are shown as colored lines in Figure 4a, and best-fit-
ting model parameters are plotted in Figure 4c.

Colored lines in Figure 4b show fits to the same data of the
TCC model based on empirical similarity functions, derived by
applying the parametric MLDS method to the same participants’
responses in the quad task (Figure 3a). For color, orientation, and
shape data sets, the TCC model qualitatively captured the error
distributions, including the decline in recall precision with set size.
The latter was achieved by fitting separate d0 parameters to each
set size (Figure 4d), because the TCC model, unlike the Neural
Resource model, does not prescribe how the memory-match signal
changes with number of memory items. For the angular location
dataset (blue in Figure 4b), TCC qualitatively failed to reproduce
the observed recall errors. Comparing the TCC and Neural
Resource fits with the AIC metric, we found extremely strong evi-
dence in favor of the population model for location (mean DAIC =
15.57, t test on individual differences in AIC values: BF10 = 7.653
108), weak evidence in favor of the population model for color
(mean DAIC = 1.57, BF10 = 1.55), and moderate evidence against
an advantage for either model for orientation (mean DAIC = 0.49,
BF10 = 0.17) and shape (mean DAIC = �0.08, BF10 = 0.11).

Comparing Empirical and Synthetic Similarity
Functions

The differences in quality of fit between the Neural Resource
and TCC models could in principle arise from differences in the
detailed architecture of the models (see Figure 1) or as a result of
the TCC model using empirical psychophysical similarity as the
basis of its responsiveness function. To distinguish these possibil-
ities, we evaluated a synthetic version of the TCC model in which
we fit the curvature of the similarity function to the WM data
along with the memory-match signal parameters. Unlike the

Figure 3
Perceptual Similarity Estimates
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Figure 4
WM Error Distributions and Fits of the Neural Resource Model and the TCC Model Based on Empirical Similarity Functions
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Empirical-TCC model, this model provided a satisfactory fit to all
four feature dimensions. Despite being penalized for its greater
complexity, the Synthetic-TCC model showed a substantial
improvement in AIC compared with Empirical-TCC for location
(mean DAIC = 14.6, BF10 = 4.14 3 109) and, to a lesser degree,
for color (mean DAIC = 1.79, BF10 = 15.66) and orientation
(mean DAIC = 1.26, BF10 = 16.88). Finally, the fits for the shape
dataset were comparable across the two versions of TCC (mean
DAIC = 1.14, BF10 = 0.57).
These results indicate that TCC has an adequate architecture to

fit WM data; however, basing the tuning function on psychophysi-
cal similarity estimated for the same feature space appears subopti-
mal. Comparing empirical similarity functions estimated from the
quad task (Figure 3a) and the synthetic similarity functions that
best fit WM data (Figure 5b), we found very strong evidence for a
difference for location (BF10 = 2.51 3 1020), with the synthetic
exponent parameters being larger on average (Figure 5c). The op-
posite pattern was observed for both color and orientation, with
strong evidence that empirical exponents overestimated the steep-
ness of the WM response function (color: BF10 = 4001; orienta-
tion: BF10 = 37.12). Finally, we found moderate evidence against

differences between empirical and synthetic similarity curves for
the shape feature dimension (BF10 = 0.11).

Next, we looked for correlations between parameters of the
MLDS fit describing a participant’s responses on the quad task,
and parameters of the Neural Resource and Synthetic-TCC models
fit to the same participants’ WM data, with a specific focus on the
parameters that contribute to the shape of the WM error distribu-
tions. If the psychophysical similarity function was the basis for
the shape of WM error distribution, we would expect to see a cor-
relation between the curvature of the empirical similarity function
derived by the MLDS method and the best fitting responsiveness
functions estimated using WM data. In contrast to this prediction,
we observed moderate evidence for absence of a correlation
between the exponents of the empirical similarity functions and
the synthetic similarity functions that reproduced WM errors,
r(387) = – .07, BF10 = 0.16 (Figure 6a). Indeed, we found moder-
ate evidence for absence of a correlation for each of the four fea-
ture dimensions: color r(89) = .07, BF10 = 0.16; orientation
r(96) = – .13, BF10 = 0.28; angular location r(103) = – .14, BF10 =
0.32; shape r(99) = – .06, BF10 = 0.15. We confirmed that the ab-
sence of correlations could not be explained by measurement noise

Figure 5
Fits of the TCC Model With Synthetic Similarity Function to WM Errors

Note. (a) The Synthetic-TCC model fit. (b) The best fitting synthetic similarity functions derived from working memory (WM) data. (c) Comparison
of empirical exponent parameters obtained from the perceptual similarity task and synthetic exponent parameters that best fit WM data. (d) The best-fit-
ting memory-match signal (d 0) parameters from the Synthetic-TCC model. Double asterisks indicate strong evidence for a difference (BF10 . 10) and
single dagger indicates moderate evidence against a difference (BF10 , 0.3). (c–d) The black circles with error bars show the mean and 95% credible
intervals. TCC = Target Confusability Competition. See the online article for the color version of this figure.
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in the estimated exponents. Reliability estimates for the empirical
exponents were .61, .59, .54, and .54 for color, orientation, loca-
tion, and shape, respectively. For the synthetic exponents we
found comparable reliabilities of .57, .53, .68, and .51 for color,
orientation, location, and shape, respectively. Correcting the corre-
lations for attenuation based on these reliabilities (see the Method
section) still yielded no meaningful associations between the em-
pirical and best-fitting exponents: color r = .12; orientation r =
�.23; angular location r = �.23; shape r = �.11. Across all four
features, the uncorrected association accounted for at most 2.6%
of variance and the corrected association for at most 5.4%.
Similarly, the curvature of the empirical similarity function did

not correlate with the tuning width parameter that determines the
shape of error distributions in the Neural Resource model,
r(387) = .1, BF10 = 0.47 (Figure 6b). Together, these results pro-
vide strong evidence that the empirical similarity function esti-
mated from the perceptual quad task is unrelated to the shape of
the WM error distribution.
In contrast, the MLDS exponent parameter was related to the

remaining parameters of Synthetic-TCC (d03: r(380) = �.16,

BF10 = 7.37; d06: r(390) = �.14, BF10 = 2.39) and Neural
Resource models (rmax: r(390) = �.21, BF10 = 494). However,
once the effect of the MLDS noise parameter was partialed out,
we found weak to strong evidence for absence of these correla-
tions (all BF10 # 0.43). Moreover, we did not observe a meaning-
ful association between the MLDS noise parameter and the
exponent from the Synthetic-TCC model, r(375) = .09, BF10 =
0.373, or the width parameter from the Neural Resource model,
r(374) = �.01, BF10 = 0.07.

We found extremely strong evidence for a correlation between the
MLDS noise parameter and the signal amplitude parameters of the
model, both for Synthetic-TCC (d03: r(368) = �.37, BF10 = 4.72 3
1010; d06: r(377) = – .21, BF10 = 325.8) and Neural Resource (rmax:
r(377) =�.3, BF10 = 2.133 106). The negative sign of these correla-
tions indicates that observers who provided noisier judgments of per-
ceptual similarity in the quad task also reported memoranda less
precisely in the WM analogue report task. This association indicates
a shared source of variability across tasks, potentially related to
broader cognitive ability or stable levels of engagement in cognitive
tasks.

Figure 6
Correlation Between Models’ Parameters, and the Best-Fitting Activation Functions
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Relationship Between Neural Resource and TCC
Parameters

The exponent in the Synthetic-TCC model, which was fitted to
WM data, was strongly correlated with the tuning width parameter in
the Neural Resource model, r(382) = – .80, BF10 = 1.463 1083 (Fig-
ure 6c). Similarly, the signal-strength parameters d’ for each set size
in the Synthetic-TCC model were strongly correlated with the signal
amplitude parameter rmax in the Neural Resource model (rmax and
d03: rð380Þ ¼ :81;BF10 ¼ 3:613 1084; rmax and d06: rð392Þ ¼ :89;

BF10 ¼ 4:393 10132). These results are consistent with the
close correspondence in architecture between the two models.
Finally, the correlation of the signal amplitude parameters from

the Synthetic-TCC model and the tuning width parameter in the
Neural Resource model received moderate support (d03:
rð375Þ ¼ :15;BF10 ¼ 3:5; d06: rð385Þ ¼ :16;BF10 ¼ 8:2), whereas
no evidence was found for correlation of the peak firing rate
and the exponent from the Synthetic-TCC model (rð387Þ ¼ �:12;
BF10 ¼ 1:1).

Synthetic-TCCWith VonMises Responsiveness Function

Comparing the responsiveness functions of the fitted Synthetic-
TCC and Neural Resource models (Figure 6d; light and dark col-
ored lines, respectively) we observed a strong qualitative similarity
in the vicinity of the functions’ peak, suggesting that the particular
combination of exponential scaling convolved with perceptual
noise specified by TCC partially emulated the von Mises (circular
normal) tuning function assumed by the Neural Resource model.
Having established this correspondence, we next tested whether
the exponential-like activation function used by TCC provided a
better account of WM data than the von Mises function typically
used to approximate neural tuning functions. To this end we fit a
version of the Synthetic-TCC model with a von Mises responsive-
ness function. This model showed a substantial improvement in
AIC over the model with exponential-like responsiveness function
for location (mean DAIC = 2.92, BF10 = 2.69 3 106) and orienta-
tion (mean DAIC = 1.03, BF10 = 2325), whereas the fits were com-
parable for color (mean DAIC = 0.52, BF10 = 0.55) and shape
(mean DAIC = 0.05, BF10 = 0.11). Responsiveness functions
obtained from this model (Figure 6d, gray lines) were notably sim-
ilar to those obtained from the Neural Resource model.

Discussion

We measured psychophysical similarity and working memory
recall in four different stimulus spaces, to evaluate the hypothe-
sized relationship between the psychological similarity function
and the distribution of WM errors. Our findings provide clear evi-
dence against such a relationship. At the group level, the respon-
siveness function that provided the best fit to working memory
errors deviated strongly from the one obtained from psychophysi-
cal similarity measurements for three out of four stimulus dimen-
sions. At the participant level, we observed evidence against a
correlation between best-fitting and observed similarity functions
in all four stimulus dimensions.
Having failed to corroborate a specific match between measured

similarity functions and patterns of WM error in the same stimulus
spaces, we further examined whether an exponentially decaying

responsiveness function had a general advantage over the von
Mises (circular normal) function more typical of population cod-
ing models. A version of TCC equipped with a von Mises respon-
siveness function fit the WM data equally well or better than the
model based on an exponential function. The fitted von Mises
responsiveness functions in this model were notably similar to the
tuning functions obtained by fitting the Neural Resource model, an
established model of WM based on population coding principles
(Bays, 2014; Schneegans et al., 2020). This is consistent with the
strong similarities in architecture between the models (see Figure
1). Furthermore, our findings on the advantage of the von Mises
over the exponential responsiveness function are consistent with
recent results reported by Oberauer (2021). By combining features
of different descriptive models of WM within a space of possible
models and fitting them to analogue report WM data, Oberauer
demonstrated that a version of a model with a von Mises respon-
siveness function provides a consistently better fit compared with
an equivalent model with the exponential responsiveness function.

Previous simulations of population coding have shown that the
shape of the tuning function has a relatively small effect on patterns
of decoding error (Bays, 2014; Bethge et al., 2002). Similarly, the
long-tailed error distributions generated by the Empirical-TCC
model are not primarily a result of a nonlinear similarity function,
but rather arise from the combination of noise distribution and
decoding strategy, as in other population coding accounts. Indeed,
long tails would be a feature of Empirical-TCC predictions even for
a psychophysical similarity function that is veridical (i.e. linear
with physical distance; Schurgin et al., 2020).

The source study showed that the TCC model with empirical
similarity function fitted analogue report data better than some of
the descriptive models widely used in the WM field (specifically,
the normal-plus-uniform mixture model of Zhang and Luck
(2008) and a variant of the variable precision model by Fougnie
et al. (2012)). The study also showed that the TCC model could
reproduce behavioral results from 2-AFC working memory tasks,
where observers must distinguish a repeated stimulus from a foil.
However, the study did not distinguish whether the relative suc-
cess of TCC over the descriptive models was a consequence of
incorporating an empirical similarity function into the WM model,
or of the differences in model architecture that made it more simi-
lar to previous population coding accounts. In particular, the study
did not systematically test whether variations in the empirical sim-
ilarity function, across individuals or feature dimensions, were
matched by corresponding changes in the shape of WM error dis-
tributions, nor were any alternative responsiveness functions com-
pared with those obtained from the similarity judgment tasks.

Although we did not find the nonlinearity of the similarity func-
tion to be related to WM errors, we found compelling evidence
that the noise affecting judgments in the perceptual quad task cor-
related with the amplitude of the WM signal in both the Synthetic-
TCC and Neural Resource models. Observers who provided less
precise reports in the working memory task also discriminated
pairs of stimuli in the quad task less accurately. A number of pos-
sible explanations for this effect should be considered. The com-
mon source of noise could indicate that the perceptual task in fact
called on working memory to facilitate the comparisons between
stimuli (Woodman & Luck, 2004). Alternatively, it could reflect
an influence on both tasks of stable levels of engagement or arise
from differences between participants in broader cognitive ability
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(Ackerman et al., 2005). These possibilities might be disambig-
uated in future studies using purpose-designed experiments.
Leaving aside our main conclusion, there are many points of

agreement between the claims made for TCC and those based on
population coding and variable precision accounts (Fougnie et al.,
2012; Schneegans et al., 2020; van den Berg et al., 2012). These
include the demonstration that a purely continuous model is com-
patible with the long-tailed error distributions that have sometimes
been taken as evidence for discrete representations (Adam et al.,
2017; Zhang & Luck, 2008) and the important observation that a
model with just one parameter is sufficient to capture variations in
recall error distribution within a particular feature dimension (that
parameter being d0 in the synthetic TCC model, activity amplitude
rmax in Neural Resource, and mean precision J1 in the variable
precision model). Comparison of the models also leads to a simple
relationship between population activity amplitude and the signal
detection parameter d0.
Besides difference in response function between the TCC and

Neural Resource models, there are two other differences that relate
to the implementation of the population code (see Figure 1). The
first concerns the noise distribution, with TCC using a Gaussian
and Neural Resource a Poisson process to describe the system’s
stochasticity. Although Poisson noise provides a more accurate
approximation to neuronal population activity (e.g., Softky &
Koch, 1993), it can also be closely approximated by Gaussian
noise with an appropriate scaling of variability, and a variant of
the Neural Resource model using this approximation has been
shown previously to provide a similar account of WM recall errors
(Schneegans & Bays, 2017; Taylor & Bays, 2020). Second, the
two models use different decoding rules, with TCC using the
MAX rule (i.e., a “winner-takes-all” decision rule) and Neural
Resource using the maximum likelihood decoder. The latter de-
coder is asymptotically unbiased and minimal in variance, and
therefore typically preferred over the generally suboptimal MAX
rule (Kay, 1993).
Concepts of similarity and generalization span sensation and

perception to a variety of higher cognitive processes. For example,
some of the most fundamental perceptual organization principles,
such as the Gestalt similarity principle, depend on the feature simi-
larity of perceived objects (Ellis, 1938). Similarly, processes
including, but not limited to object recognition (Ullman, 1989),
categorization (Hintzman, 1986), and category learning (Gluck,
1991) are often assumed to require judging the similarity of per-
ceptual or semantic representations. Moreover, adequate general-
ization across stimuli is crucial for adaptive behavior, and it has
been shown that psychiatric disorders such as anxiety disorder are
characterized by an excessive generalization of fear memories to
unrelated contexts (Ghosh & Chattarji, 2015). Although our study
found compelling evidence that the psychophysical similarity func-
tion does not explain the shape of working memory error distribu-
tions, confusability of stored items nonetheless plays a significant
role in memory retrieval. Indeed, comparison of a visible cue with
features in memory is a critical component of analogue report tasks,
with failures in this process leading to transposition or “swap”
errors. Successful accounts of these errors have been formulated in
terms of both feature similarity (Oberauer & Lin, 2017) and popula-
tion coding (Schneegans & Bays, 2017), and future work could aim
to synthesize these approaches.

More generally, an abundance of research has demonstrated
shared mechanisms and close interplay between perception and
memory. Neuroimaging studies have extensively investigated the
extent to which the brain areas involved in sensory processing also
play a critical role in the short-term storage of visual information
(Serences, 2016; Xu, 2017). Moreover, research has shown that
the contents of VWM can alter the perception of stimuli (Kang
et al., 2011; Teng & Kravitz, 2019), and that perceptual input can
disturb VWM representations (Lorenc et al., 2021; Rademaker
et al., 2015). Several studies have shown that encoding precision
and resource allocation in VWM depends on low-level sensory
characteristics of stimuli in a similar way to perception (Bays,
2016; Tomi�c & Bays, 2018).

There is an important conceptual distinction to be made between
psychophysical similarity and perceptual variability. The former is
described by a psychophysical distance scaling function, which
can be estimated from quad, triad or Likert tasks and is approxi-
mately exponential with physical distance, reflecting a nonlinear
internal representation of the distances between features, distinct
from nonuniformities in the representation of the features them-
selves (Appelle, 1972; Bae et al., 2014; Panichello et al., 2019).
The latter is measured using perceptual discrimination or analogue
report tasks, where nonuniformity is observed as differences in ac-
curacy and precision when different features in a stimulus space
are tested.

Nonuniformity in internal representation of feature spaces has
been extensively investigated (Ganguli & Simoncelli, 2014; Gir-
shick et al., 2011; Wei & Stocker, 2015, 2017) and shown to influ-
ence both perceptual and WM errors (although it does not provide
a sufficient explanation for long tails). An extension of the Neural
Resource model incorporating natural image statistics has been
shown to quantitatively reproduce nonuniformities in WM (Taylor
& Bays, 2018). In contrast, to our knowledge no study prior to
Schurgin et al. (2020) has suggested a relationship between the
psychophysical similarity function and WM errors. It is this pur-
ported relationship, and the claim that nonlinearity of the similar-
ity function explains the shape of WM error distributions, that we
test here and find evidence against.

A possible source of confusion between these distinct concepts
lies in the fact that variation in perception of individual features
affects estimates of the psychophysical similarity function
obtained from tasks such as the quad task. This influence is
thought to be responsible for small deviations in these estimates
from the idealized exponential relationship with distance (Nosof-
sky, 1992). The source study recognized the existence of these
deviations, and arguably should have attempted to remove them so
the TCC response function could more accurately reflect the
underlying psychophysical distance function; however, we fol-
lowed the source study and allowed them to contribute to the
response function, where by smoothing the peak of the response
function they may actually have made the Empirical-TCC model a
better fit to WM data.

Understanding how uncertainty of recall is represented in the
brain and used to guide decisions has become an important topic
of working memory research (Honig et al., 2020; Li et al., 2021).
In addition to error distribution, population coding accounts have
been shown to make accurate predictions about subjective confi-
dence and its correlation with error (also called metacognitive accu-
racy; Bays, 2016; Schneegans et al., 2020; van den Berg et al.,
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2017). In the case of Poisson noise, the uncertainty associated with
a recall estimate can be determined from the total activity on which
it is based (i.e., the spike count) or, more generally, from variation
in the width of the associated likelihood function (providing a link
to variable precision models; Fougnie et al., 2012; van den Berg
et al., 2012). In the TCC model, the amplitude of the maximum
response has been proposed to play the equivalent role in determin-
ing subjective confidence, although the justification for ignoring the
amplitude of other responses is unclear, and a comparable quantita-
tive match to empirical data has not yet been demonstrated.
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